設橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,令c2=a2-b2,那么它的準線方程為(  )
A.y=±
a2
c
B.y=±
b2
c
C.x=±
a2
c
D.x=±
b2
c
相關習題

科目:高中數(shù)學 來源: 題型:

設橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,令c2=a2-b2,那么它的準線方程為( 。
A、y=±
a2
c
B、y=±
b2
c
C、x=±
a2
c
D、x=±
b2
c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是過左焦點F且與x軸不垂直的弦,若在左準線l上存在點R,使△PQR為正三角形,則橢圓離心率e的取值范圍是
(
3
3
,1)
(
3
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,令c2=a2-b2,那么它的準線方程為( 。
A.y=±
a2
c
B.y=±
b2
c
C.x=±
a2
c
D.x=±
b2
c

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是過左焦點F且與x軸不垂直的弦,若在左準線l上存在點R,使△PQR為正三角形,則橢圓離心率e的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設橢圓方程為
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是過左焦點F且與x軸不垂直的弦,若在左準線l上存在點R,使△PQR為正三角形,則橢圓離心率e的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓方程為
x2
a2
+
y2
b2
=1 ( a>b>0 )
,它的一個頂點為M(0,1),離心率e=
6
3

(1)求橢圓的方程;
(2)設直線l與橢圓交于A,B兩點,坐標原點O到直線l的距離為
3
2
,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:重慶模擬 題型:解答題

已知橢圓方程為
x2
a2
+
y2
b2
=1 ( a>b>0 )
,它的一個頂點為M(0,1),離心率e=
6
3

(1)求橢圓的方程;
(2)設直線l與橢圓交于A,B兩點,坐標原點O到直線l的距離為
3
2
,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
3
,直線l:x-y=0與以原點為圓心,以橢圓C1的短半軸長為半徑的圓相切,曲線C2以x軸為對稱軸.
(1)求橢圓C1的方程;
(2)設橢圓C1的左焦點為F1,右焦點F2,直線l1過點F1且垂直于橢圓的長軸,曲線C2上任意一點M到l1距離與MF2相等,求曲線C2的方程.
(3)若A(x1,2),C(x0,y0),是C2上不同的點,且AB⊥BC,求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:舟山模擬 題型:解答題

已知C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
3
,直線l:x-y=0與以原點為圓心,以橢圓C1的短半軸長為半徑的圓相切,曲線C2以x軸為對稱軸.
(1)求橢圓C1的方程;
(2)設橢圓C1的左焦點為F1,右焦點F2,直線l1過點F1且垂直于橢圓的長軸,曲線C2上任意一點M到l1距離與MF2相等,求曲線C2的方程.
(3)若A(x1,2),C(x0,y0),是C2上不同的點,且AB⊥BC,求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,上頂點為A,△AF1F2為正三角形,且以AF2為直徑的圓與直線y=
3
x+2
相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0),使得以PM、PN為鄰邊的平行四邊形是菱形?若存在,求實數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案