已知數(shù)列{an}的前n項(xiàng)和Sn=2n+k,若{an}是等比數(shù)列,則k的值為( ) |
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列{an}的前n項(xiàng)和Sn=2n+k,若{an}是等比數(shù)列,則k的值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知數(shù)列{a
n}的前n項(xiàng)和S
n=2
n+k,若{a
n}是等比數(shù)列,則k的值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:2010-2011學(xué)年黑龍江省哈師大附中高一(下)第一次月考數(shù)學(xué)試卷(解析版)
題型:選擇題
已知數(shù)列{a
n}的前n項(xiàng)和S
n=2
n+k,若{a
n}是等比數(shù)列,則k的值為( )
A.
B.-1
C.1
D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:單選題
已知數(shù)列{an}的前n項(xiàng)和Sn=2n+k,若{an}是等比數(shù)列,則k的值為
- A.
- B.
-1
- C.
1
- D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列{a
n}的前n項(xiàng)和S
n滿足:S
n=a(S
n-a
n+1)(a為常數(shù),且a≠0,a≠1).
(1)求{a
n}的通項(xiàng)公式;
(2)設(shè)
bn=an2+Sn•an,若數(shù)列{b
n}為等比數(shù)列,求a的值;
(3)在滿足條件(2)的情形下,設(shè)c
n=4a
n+1,數(shù)列{c
n}的前n項(xiàng)和為T
n,若不等式
≥2n-7對(duì)任意的n∈N
*恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列{an}的前n項(xiàng)和Sn=2n2+2n,數(shù)列{bn}的前n項(xiàng)和Tn=2-bn,n∈N*,
(1)求{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an2•bn,是否存在正整數(shù)k,使得cn≤ck對(duì)n∈N*恒成立?若存在,求出k的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
14、已知數(shù)列{a
n}的前n項(xiàng)和S
n=n
2-9n,則其通項(xiàng)a
n=
2n-10
;若它的第k項(xiàng)滿足5<a
k<8,則k=
8
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足2Sn=pan-2n,n∈N*,其中常數(shù)p>2.
(1)證明:數(shù)列{an+1}為等比數(shù)列;
(2)若a2=3,求數(shù)列{an}的通項(xiàng)公式;
(3)對(duì)于(2)中數(shù)列{an},若數(shù)列{bn}滿足bn=log2(an+1)(n∈N*),在bk與bk+1之間插入2k-1(k∈N*)個(gè)2,得到一個(gè)新的數(shù)列{cn},試問(wèn):是否存在正整數(shù)m,使得數(shù)列{cn}的前m項(xiàng)的和Tm=2011?如果存在,求出m的值;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:2012-2013學(xué)年江蘇省鎮(zhèn)江市揚(yáng)中二中高三(上)期末數(shù)學(xué)模擬試卷(解析版)
題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足2Sn=pan-2n,n∈N*,其中常數(shù)p>2.
(1)證明:數(shù)列{an+1}為等比數(shù)列;
(2)若a2=3,求數(shù)列{an}的通項(xiàng)公式;
(3)對(duì)于(2)中數(shù)列{an},若數(shù)列{bn}滿足bn=log2(an+1)(n∈N*),在bk與bk+1之間插入2k-1(k∈N*)個(gè)2,得到一個(gè)新的數(shù)列{cn},試問(wèn):是否存在正整數(shù)m,使得數(shù)列{cn}的前m項(xiàng)的和Tm=2011?如果存在,求出m的值;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:2012年江蘇省蘇州市高三一?记斑m應(yīng)性考試數(shù)學(xué)試卷(解析版)
題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足2Sn=pan-2n,n∈N*,其中常數(shù)p>2.
(1)證明:數(shù)列{an+1}為等比數(shù)列;
(2)若a2=3,求數(shù)列{an}的通項(xiàng)公式;
(3)對(duì)于(2)中數(shù)列{an},若數(shù)列{bn}滿足bn=log2(an+1)(n∈N*),在bk與bk+1之間插入2k-1(k∈N*)個(gè)2,得到一個(gè)新的數(shù)列{cn},試問(wèn):是否存在正整數(shù)m,使得數(shù)列{cn}的前m項(xiàng)的和Tm=2011?如果存在,求出m的值;如果不存在,說(shuō)明理由.
查看答案和解析>>