若直線l過點(3,0)與雙曲線4x2-9y2=36只有一個公共點,則這樣的直線有( 。
A.1條B.2條C.3條D.4條
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線l過點(3,0)與雙曲線4x2-9y2=36只有一個公共點,則這樣的直線有( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線l過點(3,0)與雙曲線4x2-9y2=36只有一個公共點,則這樣的直線有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年黑龍江省鶴崗一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若直線l過點(3,0)與雙曲線4x2-9y2=36只有一個公共點,則這樣的直線有( )
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年湖南省永州市祁陽二中高二(下)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

若直線l過點(3,0)與雙曲線4x2-9y2=36只有一個公共點,則這樣的直線有( )
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省泉州市南安市詩山中學(xué)高二(上)第三次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

若直線l過點(3,0)與雙曲線4x2-9y2=36只有一個公共點,則這樣的直線有( )
A.1條
B.2條
C.3條
D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若直線l過點(3,0)與雙曲線4x2-9y2=36只有一個公共點,則這樣的直線有


  1. A.
    1條
  2. B.
    2條
  3. C.
    3條
  4. D.
    4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,0)及雙曲線E:
x2
9
-
y2
16
=1
,若雙曲線E的右支上的點Q到點B(m,0)(m≥3)距離的最小值為|AB|.
(1)求m的取值范圍,并指出當(dāng)m變化時B的軌跡C
(2)如(圖1),軌跡C上是否存在一點D,它在直線y=
4
3
x
上的射影為P,使得
AP
OD
=
OP
PD
?若存在試指出雙曲線E的右焦點F分向量
AD
所成的比;若不存在,請說明理由.
(3)(理)當(dāng)m為定值時,過軌跡C上的點B(m,0)作一條直線l與雙曲線E的右支交于不同的兩點(圖2),且與直線y=
4
3
x
y=-
4
3
x
分別交于M、N兩點,求△MON周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的中心是原點O,它的虛軸長為2
6
,右焦點為F(c,0)(c>0),直線l:x=
a2
c
與x軸交于點A,且|OF|=3|OA|.過點F的直線與雙曲線交于P、Q兩點.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若
AP
AQ
=0,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=2,F(xiàn)1,F(xiàn)2是左,右焦點,過F2作x軸的垂線與雙曲線在第一象限交于P點,直線F1P與右準線交于Q點,已知
F1P
F2Q
=-
15
64

(1)求雙曲線的方程;
(2)設(shè)過F1的直線MN分別與左支,右支交于M、N,線段MN的垂線平分線l與x軸交于點G(x0,0),若1≤|NF2|<3,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的中心是原點O,它的虛軸長為2,相應(yīng)的焦點F(c,0)(c>0)的準線l與x軸交于點A,且|OF|=3|OA|.過點F的直線與雙曲線交于P、Q兩點.

(1)求雙曲線的方程及離心率;

(2)若=0,求直線PQ的方程.

查看答案和解析>>


同步練習(xí)冊答案