已知點A(4,3)和點B是同一平面直角坐標系內(nèi)兩點,且它們關于直線x軸對稱,則點B的坐標為( 。
A.(-4,3)B.(3,4)C.(3,-4)D.(4,-3)
相關習題

科目:初中數(shù)學 來源:2013年湖南省長沙市中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

在平面直角坐標系xOy中,已知二次函數(shù)y=的圖象經(jīng)過點A(2,0)和點B(1,-),直線l經(jīng)過拋物線的頂點且與y軸垂直,垂足為Q.

(1)求該二次函數(shù)的表達式;
(2)設拋物線上有一動點P從點B處出發(fā)沿拋物線向上運動,其縱坐標y1隨時間t(t≥0)的變化規(guī)律為y1=-+2t.現(xiàn)以線段OP為直徑作⊙C.
①當點P在起始位置點B處時,試判斷直線l與⊙C的位置關系,并說明理由;在點P運動的過程中,直線l與⊙C是否始終保持這種位置關系?請說明你的理由.
②若在點P開始運動的同時,直線l也向上平行移動,且垂足Q的縱坐標y2隨時間t的變化規(guī)律為y2=-1+3t,則當t在什么范圍內(nèi)變化時,直線l與⊙C相交?此時,若直線l被⊙C所截得的弦長為a,試求a2的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省鹽城市中考數(shù)學試卷(解析版) 題型:解答題

在平面直角坐標系xOy中,已知二次函數(shù)y=的圖象經(jīng)過點A(2,0)和點B(1,-),直線l經(jīng)過拋物線的頂點且與y軸垂直,垂足為Q.

(1)求該二次函數(shù)的表達式;
(2)設拋物線上有一動點P從點B處出發(fā)沿拋物線向上運動,其縱坐標y1隨時間t(t≥0)的變化規(guī)律為y1=-+2t.現(xiàn)以線段OP為直徑作⊙C.
①當點P在起始位置點B處時,試判斷直線l與⊙C的位置關系,并說明理由;在點P運動的過程中,直線l與⊙C是否始終保持這種位置關系?請說明你的理由.
②若在點P開始運動的同時,直線l也向上平行移動,且垂足Q的縱坐標y2隨時間t的變化規(guī)律為y2=-1+3t,則當t在什么范圍內(nèi)變化時,直線l與⊙C相交?此時,若直線l被⊙C所截得的弦長為a,試求a2的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=-
23
x2+bx+c
與x軸交于不同的兩點A(x1,0)和B(x2,0),與y軸交于點C,且x1,x2是方程x2-2x-3=0的兩個根(x1<x2).
(1)求拋物線的解析式;
(2)過點A作AD∥CB交拋物線于點D,求四邊形ACBD的面積;
(3)如果P是線段AC上的一個動點(不與點A、C重合),過點P作平行于x軸的直線l交BC于點Q,那么在x軸上是否存在點R,使得△PQR為等腰直角三角形?若存在,求出點R的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知雙曲線y=
3x
和直線y=kx+2(k是常數(shù))相交于點A(x1,y1)和點B(x2,y2),(x1<x2)且x12+x22=10
(1)求k值;
(2)在同一平面直角坐標系中畫出兩個函數(shù)圖象,根據(jù)圖象寫出一次函數(shù)值大于反比例函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知雙曲線數(shù)學公式和直線y=kx+2(k是常數(shù))相交于點A(x1,y1)和點B(x2,y2),(x1<x2)且數(shù)學公式
(1)求k值;
(2)在同一平面直角坐標系中畫出兩個函數(shù)圖象,根據(jù)圖象寫出一次函數(shù)值大于反比例函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線與x軸交于不同的兩點,與y軸交于點C,且是方程的兩個根().

1.求拋物線的解析式;

2.過點A作AD∥CB交拋物線于點D,求四邊形ACBD的面積;

3.如果P是線段AC上的一個動點(不與點A、C重合),過點P作平行于x軸的直線l交BC于點Q,那么在x軸上是否存在點R,使得△PQR為等腰直角三角形?若存在,求出點R的坐標;若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年北京順義區(qū)中考模擬數(shù)學卷 題型:解答題

已知拋物線與x軸交于不同的兩點,與y軸交于點C,且是方程的兩個根().

1.求拋物線的解析式;

2.過點A作AD∥CB交拋物線于點D,求四邊形ACBD的面積;

3.如果P是線段AC上的一個動點(不與點A、C重合),過點P作平行于x軸的直線l交BC于點Q,那么在x軸上是否存在點R,使得△PQR為等腰直角三角形?若存在,求出點R的坐標;若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知雙曲線y=
3
x
和直線y=kx+2(k是常數(shù))相交于點A(x1,y1)和點B(x2,y2),(x1<x2)且x12+x22=10
(1)求k值;
(2)在同一平面直角坐標系中畫出兩個函數(shù)圖象,根據(jù)圖象寫出一次函數(shù)值大于反比例函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=-
2
3
x2+bx+c
與x軸交于不同的兩點A(x1,0)和B(x2,0),與y軸交于點C,且x1,x2是方程x2-2x-3=0的兩個根(x1<x2).
(1)求拋物線的解析式;
(2)過點A作ADCB交拋物線于點D,求四邊形ACBD的面積;
(3)如果P是線段AC上的一個動點(不與點A、C重合),過點P作平行于x軸的直線l交BC于點Q,那么在x軸上是否存在點R,使得△PQR為等腰直角三角形?若存在,求出點R的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在平面直角坐標系中,已知直角梯形OABC的頂點分別是O(0,0),點A(9,0),B(6,4),C(0,4).點P從點C沿C-B-A運動,速度為每秒2個單位,點Q從A向O點運動,速度為每秒1個單位,當其中一個點到達終點時,另一個點也停止運動.兩點同時出發(fā),設運動的時間是t秒.
(1)點P和點Q誰先到達終點?到達終點時t的值是多少?
(2)當t取何值時,直線PQ∥AB?并寫出此時點P的坐標.(寫出解答過程)
(3)是否存在符合題意的t的值,使直角梯形OABC被直線PQ分成面積相等的兩個部分?如精英家教網(wǎng)果存在,求出t的值;如果不存在,請說明理由.
(4)探究:當t取何值時,直線PQ⊥AB?(只要直接寫出答案,不需寫出計算過程).

查看答案和解析>>


同步練習冊答案