設(shè)f(x)=|x2-
1
2
|,若0<a<b,且f(a)=f(b),則ab的取值范圍是( 。
A.(0,
1
2
B.(0,
1
2
]
C.(0,2)D.(0,2]
A
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=|x2-
1
2
|,若0<a<b,且f(a)=f(b),則ab的取值范圍是( 。
A、(0,
1
2
B、(0,
1
2
]
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)=|x2-
1
2
|,若0<a<b,且f(a)=f(b),則ab的取值范圍是(  )
A.(0,
1
2
B.(0,
1
2
]
C.(0,2)D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax+
1-a
x
-1.
(1)當(dāng)a=1時,求f(x)在(1,f(1))處的切線方程;
(2)當(dāng)0<a≤
1
2
時,討論函數(shù)f(x)的單調(diào)性;
(3)設(shè)g(x)=x2-2bx+4,當(dāng)a=
1
4
時,若對任意x1∈(0,2),當(dāng)x2∈[1,2]時,f(x1)≥g(x2)恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:沈陽二模 題型:解答題

已知函數(shù)f(x)滿足2f(x+2)-f(x)=0,當(dāng)x∈(0,2)時,f(x)=lnx+ax(a<-
1
2
)
,當(dāng)x∈(-4,-2)時,f(x)的最大值為-4.
(I)求實(shí)數(shù)a的值;
(II)設(shè)b≠0,函數(shù)g(x)=
1
3
bx3-bx
,x∈(1,2).若對任意的x1∈(1,2),總存在x2∈(1,2),使f(x1)-g(x2)=0,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log2
1-x
1+x
 (-1<x<1).
(1)若f(a)+f(b)=0,求證:a+b=0;
(2)設(shè)f(
1
2
)+f(
1
3
)=f(x0)
,求x0的值;
(3)設(shè)x1、x2∈(-1,1),是否存在x3∈(-1,1),使得f(x1)+f(x2)=f(x3),若存在,求出x3,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c滿足f(1)=0.
(I)若a>b>c,證明f(x)的圖象與x軸有兩個交點(diǎn),且這兩個交點(diǎn)間的距離d滿足:
3
2
<d<3;
(Ⅱ)設(shè)f(x)在x=
t+1
2
(t>0,t≠1)處取得最小值,且對任意實(shí)數(shù)x,等式f(x)g(x)+anx+bn=xn+1(其中n∈N,g(x)=x2+x+1)都成立,若數(shù)列{cn}的前n項(xiàng)和為bn,求{cn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c滿足f(1)=0.
(I)若a>b>c,證明f(x)的圖象與x軸有兩個交點(diǎn),且這兩個交點(diǎn)間的距離d滿足:
3
2
<d<3;
(Ⅱ)設(shè)f(x)在x=
t+1
2
(t>0,t≠1)處取得最小值,且對任意實(shí)數(shù)x,等式f(x)g(x)+anx+bn=xn+1(其中n∈N,g(x)=x2+x+1)都成立,若數(shù)列{cn}的前n項(xiàng)和為bn,求{cn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-
1
2|x|

(1)設(shè)集合A={x|f(x)≤
15
4
}
,B={x|x2-6x+p<0},若A∩B≠∅,求實(shí)數(shù)p的取值范圍;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x-
1
2|x|

(1)設(shè)集合A={x|f(x)≤
15
4
}
,B={x|x2-6x+p<0},若A∩B≠∅,求實(shí)數(shù)p的取值范圍;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)當(dāng)0<a≤
1
2
時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)g(x)=x2-2bx+4,當(dāng)a=
1
4
時,若對任意x1∈(0,2),當(dāng)x2∈[1,2]時,f(x1)≥g(x2)恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案