若P(a,b)是雙曲線x2-4y2=m(m≠0)上一點(diǎn),且滿足a-2b>0,a+2b>0,則該點(diǎn)一定位于雙曲線( 。
A.右支上B.上支上
C.右支上或上支上D.不能確定
A
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若P(a,b)是雙曲線x2-4y2=m(m≠0)上一點(diǎn),且滿足a-2b>0,a+2b>0,則該點(diǎn)一定位于雙曲線( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P(a,b)是雙曲線x2-4y2=m(m≠0)上一點(diǎn),且滿足a-2b>0,a+2b>0,則雙曲線離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:柳州三模 題型:單選題

若P(a,b)是雙曲線x2-4y2=m(m≠0)上一點(diǎn),且滿足a-2b>0,a+2b>0,則該點(diǎn)一定位于雙曲線( 。
A.右支上B.上支上
C.右支上或上支上D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市八校聯(lián)考高三(上)期初數(shù)學(xué)試卷 (文科)(解析版) 題型:選擇題

若P(a,b)是雙曲線x2-4y2=m(m≠0)上一點(diǎn),且滿足a-2b>0,a+2b>0,則雙曲線離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市八校聯(lián)考高三(上)期初數(shù)學(xué)試卷 (文科)(解析版) 題型:選擇題

若P(a,b)是雙曲線x2-4y2=m(m≠0)上一點(diǎn),且滿足a-2b>0,a+2b>0,則雙曲線離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年江蘇省泰州市泰興中學(xué)高考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

若P(a,b)是雙曲線x2-4y2=m(m≠0)上一點(diǎn),且滿足a-2b>0,a+2b>0,則該點(diǎn)一定位于雙曲線( )
A.右支上
B.上支上
C.右支上或上支上
D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若P(a,b)是雙曲線x2-4y2=m(m≠0)上一點(diǎn),且滿足a-2b>0,a+2b>0,則該點(diǎn)一定位于雙曲線


  1. A.
    右支上
  2. B.
    上支上
  3. C.
    右支上或上支上
  4. D.
    不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(a,b)(a•b≠0)、R(a,2)為坐標(biāo)平面xoy上的點(diǎn),直線OR(O為坐標(biāo)原點(diǎn))與拋物線y2=
4ab
x
交于點(diǎn)Q(異于O).
(1)若對(duì)任意ab≠0,點(diǎn)Q在拋物線y=mx2+1(m≠0)上,試問當(dāng)m為何值時(shí),點(diǎn)P在某一圓上,并求出該圓方程M;
(2)若點(diǎn)P(a,b)(ab≠0)在橢圓x2+4y2=1上,試問:點(diǎn)Q能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3)對(duì)(1)中點(diǎn)P所在圓方程M,設(shè)A、B是圓M上兩點(diǎn),且滿足|OA|•|OB|=1,試問:是否存在一個(gè)定圓S,使直線AB恒與圓S相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似三角形,則稱這兩個(gè)橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1
x2
a2
+
y2
b2
=1
以拋物線y2=4
3
x
的焦點(diǎn)為一個(gè)焦點(diǎn),且橢圓上任意一點(diǎn)到兩焦點(diǎn)的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點(diǎn)P(m,n)(mn≠0)是橢圓C1上的任一點(diǎn),若點(diǎn)Q是直線y=nx與拋物線x2=
1
mn
y
異于原點(diǎn)的交點(diǎn),證明點(diǎn)Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省淮安市清河區(qū)清江中學(xué)高考數(shù)學(xué)押題卷(解析版) 題型:解答題

設(shè)P(a,b)、R(a,2)為坐標(biāo)平面xoy上的點(diǎn),直線OR(O為坐標(biāo)原點(diǎn))與拋物線交于點(diǎn)Q(異于O).
(1)若對(duì)任意ab≠0,點(diǎn)Q在拋物線y=mx2+1(m≠0)上,試問當(dāng)m為何值時(shí),點(diǎn)P在某一圓上,并求出該圓方程M;
(2)若點(diǎn)P(a,b)(ab≠0)在橢圓x2+4y2=1上,試問:點(diǎn)Q能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3)對(duì)(1)中點(diǎn)P所在圓方程M,設(shè)A、B是圓M上兩點(diǎn),且滿足|OA|•|OB|=1,試問:是否存在一個(gè)定圓S,使直線AB恒與圓S相切.

查看答案和解析>>


同步練習(xí)冊(cè)答案