定義在R上的函數(shù)f(x)滿足:f(x)的圖象關(guān)于y軸對(duì)稱,并且對(duì)任意的x1,x2∈(-∞,0](x1≠x2)有(x1-x2)(f(x1)-f(x2))>0.則當(dāng)n∈N﹡時(shí),有( 。A.f(n+1)<f(-n)<f(n-1) | B.f(n-1)<f(-n)<f(n+1) | C.f(-n)<f(n-1)<f(n+1) | D.f(n+1)<f(n-1)<f(-n) |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
定義在R上的函數(shù)f(x)滿足:f(x)=f(x+2),當(dāng)x∈[3,5]時(shí),f(x)=2-|x-4|.下列四個(gè)不等關(guān)系:
f(sin)<f(cos);
f(sin1)>f(cos1);
f(cos)<f(sin);
f(cos2)>f(sin2).
其中正確的個(gè)數(shù)是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
定義在R上的函數(shù)f (x)滿足:如果對(duì)任意x
1,x
2∈R,都有
f()≤[f(x1)+f(x2)],則稱函數(shù)f (x)是R上的凹函數(shù),已知二次函數(shù)f(x)=ax
2+x(a∈R,a≠0),
(1)當(dāng)a=1時(shí),試判斷函數(shù)f (x)是否為凹函數(shù),并說(shuō)明理由;
(2)如果函數(shù)f (x)對(duì)任意的x∈[0,1]時(shí),都有|f(x)|≤1,試求實(shí)數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
5、定義在R上的函數(shù)f(x)滿足:f(x)=f (4-x)且f (2-x)+f (x-2)=0,則f (2008)的值是
0
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
定義在R上的函數(shù)f(x)滿足:f(x+2)+f(x)=0,且函數(shù)f(x+1)為奇函數(shù),對(duì)于下列命題:
①函數(shù)f(x)是以T=2為周期的函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱;
③函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱;
④函數(shù)f(x)的最大值為f(2);
⑤f(2011)=0.
其中正確結(jié)論的序號(hào)為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
定義在R上的函數(shù)f(x)滿足:
f(x+2)=,當(dāng)x∈(0,4)時(shí),f(x)=x
2-1,則f(2010)=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
定義在R上的函數(shù)f(x)滿足:
f(x+2)=,當(dāng)x∈(0,4)時(shí),f(x)=x
2-1,則f(2011)=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
定義在R上的函數(shù)f(x)滿足:對(duì)任意a,b∈R都有f(a+b)=f(a)•f(b),且f(1)=3.
(1)求f(0),f(-1)的值;
(2)若當(dāng)x>0時(shí),有f(x)>1,判斷函數(shù)f(x)的單調(diào)性,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
定義在R上的函數(shù)f(x)滿足:①f(0)≠0,②當(dāng)x<0時(shí),f(x)>1,③對(duì)任意x,y都有f(x+y)=f(x)•f(y),那么不等式f(x-1)f(x2-2x)≥1的解集是( 。
| |
| |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
定義在R上的函數(shù)f(x)滿足:如果對(duì)任意x
1,x
2∈R,都有
f()≤[f(x1)+f(x2)],則稱f(x)是R上凹函數(shù).已知二次函數(shù)f(x)=ax
2+x(a∈R,且a≠0).
(1)求證:當(dāng)a>0時(shí),函數(shù)f(x)的凹函數(shù);
(2)如果x∈[0,1]時(shí),|f(x)|≤1,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
定義在R上的函數(shù)f(x)滿足:對(duì)任意實(shí)數(shù)m,n,總有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1.
(1)試求f(0)的值;
(2)判斷f(x)的單調(diào)性并證明你的結(jié)論;
(3)設(shè)A={(x,y)|f(x
2)•f(y
2)>f(1)},
B={(x,y)|f(ax-y+)=1,a∈R}若A∩B=∅,試確定a的取值范圍.
(4)試舉出一個(gè)滿足條件的函數(shù)f(x).
查看答案和解析>>