0  444087  444095  444101  444105  444111  444113  444117  444123  444125  444131  444137  444141  444143  444147  444153  444155  444161  444165  444167  444171  444173  444177  444179  444181  444182  444183  444185  444186  444187  444189  444191  444195  444197  444201  444203  444207  444213  444215  444221  444225  444227  444231  444237  444243  444245  444251  444255  444257  444263  444267  444273  444281  447090 

4.設α、β是關于方程 -2(k -1)x+k+1=0的兩個實根,求 y= +關于k的解析式,并求y的取值范圍

(y= +=4(k-)2 -, k≥3或k≤0, 得y≥2.)

試題詳情

3.對于任意實數(shù)x,代數(shù)式 (5-4a-)-2(a-1)x-3的值恒為負值,求a的取值范圍(a≥1或a<-8)

試題詳情

2.如果對于任何實數(shù)x,不等式kx2-kx+1>0 (k>0)都成立,那么k的取值范圍是           (0<k<4)

試題詳情

1.如果不等式x2-2ax+1≥(x-1)2對一切實數(shù)x都成立,a的取值范圍是        (0≤a≤1)

試題詳情

例1解關于x的不等式

分析  此不等式為含參數(shù)k的不等式,當k值不同時相應的二次方程的判別式的值也不同,故應先從討論判別式入手.

解 

(1) 當有兩個不相等的實根.

所以不等式

(2) 當有兩個相等的實根,

所以不等式,即

(3) 當無實根

所以不等式解集為.

說明  一元二次方程、一元二次不等式、一元二次函數(shù)有著密切的聯(lián)系,要注意數(shù)形結合研究問題.

小結:討論,即討論方程根的情況

例2.解關于x的不等式:(x-+12)(x+a)<0.

解:①將二次項系數(shù)化“+”為:(-x-12)(x+a)>0,

②相應方程的根為:-3,4,-a,現(xiàn)a的位置不定,應如何解?

③討論:

ⅰ當-a>4,即a<-4時,各根在數(shù)軸上的分布及穿線如下:

∴原不等式的解集為{x| -3<x<4或x>-a}.

ⅱ當-3<-a<4,即-4<a<3時,各根在數(shù)軸上的分布及穿線如下:

∴原不等式的解集為{x| -3<x<-a或x>4}.

ⅲ當-a<-3,即a>3時,各根在數(shù)軸上的分布及穿線如下:

∴原不等式的解集為{x| -a<x<-3或x>4}.

ⅳ0當-a=4,即a=-4時,各根在數(shù)軸上的分布及穿線如下:

∴原不等式的解集為{x| x>-3}.

ⅴ當-a=-3,即a=3時,各根在數(shù)軸上的分布及穿線如下:

∴原不等式的解集為{x| x>4}.

小結:討論方程根之間的大小情況

例3若不等式對于x取任何實數(shù)均成立,求k的取值范圍.

解:∵

 (∵4x2+6x+3恒正),

∴原不等式對x取任何實數(shù)均成立,等價于不等式2x2-2(k-3)x+3-k>0對x取任何實數(shù)均成立.

=[-2(k-3)]2-8(3-k)<0k2-4k+3<01<k<3.

∴k的取值范圍是(1,3).

小結:逆向思維題目,告訴解集反求參數(shù)范圍,即確定原不等式,待定系數(shù)法的一部分

例4 已知關于x的二次不等式:a+(a-1)x+a-1<0的解集為R,求a的取值范圍.

分析:原不等式的解集為R,即對一切實數(shù)x不等式都成立,故必然y= a+(a-1)x+a-1的圖象開口向下,且與x軸無交點,反映在數(shù)量關系上則有a<0 且<0.

解:由題意知,要使原不等式的解集為R,必須,

a<-.  ∴a的取值范圍是a∈(-,-).

說明:本題若無“二次不等式”的條件,還應考慮a=0的情況,但對本題講a=0時式子不恒成立.(想想為什么?)

練習:已知(-1) -(a-1)x-1<0的解集為R,求實數(shù)a的取值范圍.

解:若-1=0,即a=1或a=-1時,原不等式的解集為R和{x|x<};

-10,即a1時,要使原不等式的解集為R,

必須.

∴實數(shù)a的取值范圍是(-,1)∪{1}=(-,1).

試題詳情

2.一元一次、一元二次、高次、分式不等式得解法及注意事項

試題詳情

1.函數(shù)、方程、不等式的關系

試題詳情

第二節(jié)  書面表達(滿分25分)

假設你是李華,Peter是你的筆友。隨著國慶節(jié)的來臨,他們一家準備來中國旅游。請你給他發(fā)封郵件,推薦景點及出行方式。

注意:

1.字數(shù)100左右;

2.可以適當增加細節(jié),以使行文連貫;

3.開頭和結尾已為你寫好,不計入總詞數(shù)。

Dear Peter.

I’m so glad to learn that you and your family are coming to visit China.

                                      

                                      

                                       

                                      

                                      

                                       

                                      

                                      

                                      

                                       

                                      

Looking forward to seeing you!                   

試題詳情


同步練習冊答案