0  437429  437437  437443  437447  437453  437455  437459  437465  437467  437473  437479  437483  437485  437489  437495  437497  437503  437507  437509  437513  437515  437519  437521  437523  437524  437525  437527  437528  437529  437531  437533  437537  437539  437543  437545  437549  437555  437557  437563  437567  437569  437573  437579  437585  437587  437593  437597  437599  437605  437609  437615  437623  447090 

1.求最大公約數(shù)

(1)輾轉相除法

程序框圖與程序語句

程序:

INPUT “m,n=”;m,n

DO

r=m MOD n

m=n

n=r

LOOP UNTIL r=0

PRINT   

END

(2)更相減損術

更相減損術程序:

INPUT “請輸入兩個不相等的正整數(shù)”;a,b

i=0

WHILE a MOD 2=0 AND b MOD 2=0

a=a/2

b=b/2

i=i+1

WEND

DO

IF b<a THEN

t=a

a=b

b=t

END IF

c=a-b

a=b

b=c

LOOP UNTIL a=b

PRINT a^i

END

對于兩個正整數(shù)如何選擇合適的方法求他們的最大公約數(shù)

方法
適用范圍及特點
短除法
適合兩個較小的正整數(shù)或兩個質因數(shù)較少的正整數(shù),簡便易操作。
窮舉法
適合計算機操作,但一一驗證過于繁瑣。
輾轉相除法
適用于兩個較大的正整數(shù),以除法為主,輾轉相除法計算次數(shù)相對較少,特別當兩個數(shù)字大小差別較大時計算次數(shù)較明顯。
 
更相減損術
適用于兩個較大的正整數(shù),更相減損術以減法為主,計算次數(shù)上相對于輾轉相處法較多。

試題詳情

6]   -3    0    15

[-3   6]    0    15

[-3   0    6]   15

[-3   0    6    15]

用冒泡排序法排序:

6
 
6
 
6
 
6
 
6
 
6
 
6
 
15
 
15
 
15
-3
 
-3
 
0
 
0
 
0
 
15
 
15
 
6
 
6
 
6
0
 
0
 
-3
 
15
 
15
 
0
 
0
 
0
 
0
 
0
15
 
15
 
15
 
-3
 
-3
 
-3
 
-3
 
-3
 
-3
 
-3

題型4:進位值

例7.把十進制數(shù)89化為三進制數(shù),并寫出程序語句.

解析:具體的計算方法如下:

89=3×29+2

29=3×9+2

9=3×3+0

3=3×1+0

1=3×0+1

所以:89(10)=1011001(3)。

點評:根據(jù)三進制數(shù)滿三進一的原則,可以用3連續(xù)去除89及其所的得的商,然后按倒序的先后順序取出余數(shù)組成數(shù)據(jù)即可。

例8.將8進制數(shù)314706(8)化為十進制數(shù),并編寫出一個實現(xiàn)算法的程序。

解析:314706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104902。

所以,化為十進制數(shù)是104902。

點評:利用把k進制數(shù)轉化為十進制數(shù)的一般方法就可以把8進制數(shù)314706(8)化為十進制數(shù),然后根據(jù)該算法,利用GET函數(shù),應用循環(huán)結構可以設計程序。

試題詳情

7]  1  3  12  8  4  9  10

[7  1]  3  12  8  4  9  10

[7  3  1]  12  8  4  9  10

[12  7  3   1]  8  4  9  10

[12  8  7   3  1]  4  9  10

[12  8  7   4   3  1]  9  10

[12  9  8   7   4  3  1]  10

[12  10  9   8   7   4  3  1] 

冒泡排序

7
 
7
 
7
 
7
 
7
 
7
 
7
 
7
1
1
3
 
3
 
3
 
3
 
3
 
3
3
3
1
 
12
 
12
 
12
 
12
 
12
12
12
12
 
1
 
8
 
8
 
8
 
8
8
8
8
 
8
 
1
 
4
 
4
 
4
4
4
4
 
4
 
4
 
1
 
9
 
9
9
9
9
 
9
 
9
 
9
 
1
 
10
10
10
10
 
10
 
10
 
10
 
10
 
 

第一趟

7
 
7
 
12
 
12
 
12
 
12
3
 
12
 
8
 
8
 
9
 
10
12
 
8
 
7
 
9
 
10
 
9
8
 
4
 
9
 
10
 
8
 
8
4
 
9
 
10
 
7
 
7
 
7
9
 
10
 
4
 
4
 
4
 
4
10
 
3
 
3
 
3
 
3
 
3
1
 
1
 
1
 
1
 
1
 
1

第2趟  第3趟   第4趟   第5趟  第6趟

點評:直接插入法和冒泡法排序是常見的排序方法,通過該例,我們對比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些.

例6.給出以下四個數(shù):6,-3,0,15,用直接插入法排序將它們按從小到大的順序排列,用冒泡法將它們按從大到小的順序排列.

分析:不論從大到小的順序還是按從大到小的順序,都可按兩種方法的步驟進行排序。

解析:

直接插入排序法:

試題詳情

題型1:求最大公約數(shù)

例1.(1)用輾轉相除法求123和48的最大公約數(shù)?

(2)用更相減損來求80和36的最大公約數(shù)?

解析:(1)輾轉相除法求最大公約數(shù)的過程如下:(建立帶余除式)

 123=2×48+27

 48=1×27+21

 27=1×21+6

 21=3×6+3

 6=2×3+0

最后6能被3整除,得123和48的最大公約數(shù)為3。

(2)分析:我們將80作為大數(shù),36作為小數(shù),執(zhí)行更相減損術來求兩數(shù)的最大公約數(shù)。執(zhí)行結束的準則是減數(shù)和差相等.

更相減損術:

因為80和36都是偶數(shù),要去公因數(shù)2。

80÷2=40,36÷2=18;

40和18都是偶數(shù),要去公因數(shù)2。

40÷2=20,18÷2=9

下面來求20與9的最大公約數(shù),

20-9=11

11-9=2

9-2=7

7-2=5

5-2=3

3-2=1

2-1=1

可得80和36的最大公約數(shù)為22×1=4。

點評:對比兩種方法控制好算法的結束,輾轉相除法是到達余數(shù)為0,更相減損術是到達減數(shù)和差相等。

例2.設計一個算法,求出840與1764的最大公因數(shù)。

解析:我們已經學習過了對自然數(shù)的素因數(shù)分解的方法,下面的算法就是在此基礎上設計的。

解題思路如下:

首先對兩個數(shù)進行素因數(shù)分解:

840=23×3×5×7,1764=22×32×72,

其次,確定兩個數(shù)的公共素因數(shù):2,3,7。

接著確定公共素因數(shù)的指數(shù):對于公共素因數(shù)2,840中為23,1764中為22,應取較少的一個22,同理可得下面的因數(shù)為3和7。

算法步驟:

第一步:將840進行素數(shù)分解23×3×5×7;

第二步:將1764進行素數(shù)分解22×32×72;

第三步:確定它們的公共素因數(shù):2,3,7;

第四步:確定公共素因數(shù)2,3,7的指數(shù)分別是:2,1,1;

第五步:最大公因數(shù)為22×31×71=84。

點評:質數(shù)是除1以外只能被1和本身整除的正整數(shù),它應該是無限多個,但是目前沒有一個規(guī)律來確定所有的質數(shù).

題型2:秦九韶算法

例3.(2009福州模擬)如果執(zhí)行右面的程序框圖,那么輸出的           (    )

A.22       B.46       C.      D.190

答案  C

2、(2009浙江卷理)某程序框圖如圖所示,該程序運行后輸出的的值是      (   )

A.    B.      C.     D.

[解析]對于,而對于,則 

,后面是,不 

符合條件時輸出的

答案 A

試題詳情

4.進位制

(1)概念

進位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值?墒褂脭(shù)字符號的個數(shù)稱為基數(shù),基數(shù)為n,即可稱n進位制,簡稱n進制。現(xiàn)在最常用的是十進制,通常使用10個阿拉伯數(shù)字0-9進行記數(shù)。

對于任何一個數(shù),我們可以用不同的進位制來表示。比如:十進數(shù)57,可以用二進制表示為111001,也可以用八進制表示為71、用十六進制表示為39,它們所代表的數(shù)值都是一樣的。

一般地,若k是一個大于一的整數(shù),那么以k為基數(shù)的k進制可以表示為:

,

而表示各種進位制數(shù)一般在數(shù)字右下腳加注來表示,如111001(2)表示二進制數(shù),34(5)表示5進制數(shù)。

(2)進位制間的轉換

關于進位制的轉換,教科書上以十進制和二進制之間的轉換為例講解,并推廣到十進制和其它進制之間的轉換。這樣做的原因是,計算機是以二進制的形式進行存儲和計算數(shù)據(jù)的,而一般我們傳輸給計算機的數(shù)據(jù)是十進制數(shù)據(jù),因此計算機必須先將十進制數(shù)轉換為二進制數(shù),再處理,顯然運算后首次得到的結果為二進制數(shù),同時計算機又把運算結果由二進制數(shù)轉換成十進制數(shù)輸出。

非十進制數(shù)轉換為十進制數(shù)比較簡單,只要計算下面的式子值即可:

第一步:從左到右依次取出k進制數(shù)各位上的數(shù)字,乘以相應的k的冪,k的冪從n開始取值,每次遞減1,遞減到0,即;

第二步:把所得到的乘積加起來,所得的結果就是相應的十進制數(shù)。

十進制數(shù)轉換成非十進制數(shù)

把十進制數(shù)轉換為二進制數(shù),教科書上提供了“除2取余法”,我們可以類比得到十進制數(shù)轉換成k進制數(shù)的算法“除k取余法”。

非十進制之間的轉換

一個自然的想法是利用十進制作為橋梁。教科書上提供了一個二進制數(shù)據(jù)與16進制數(shù)據(jù)之間的互化的方法,也就是先有二進制數(shù)轉化為十進制數(shù),再由十進制數(shù)轉化成為16進制數(shù)。

試題詳情

7.將新數(shù)據(jù)列中的第7個數(shù)97與右邊相鄰的數(shù)49進行比較,因為49<97,97應下沉,所以順序改變,得到新的數(shù)據(jù)列:

{38,49,65, 76, 13,97, 49,27}

我們把上述過程稱為一趟排序。其基本特征是最大的數(shù)據(jù)沉到底,即排在最左邊位置上的數(shù)據(jù)是數(shù)組中最大的數(shù)據(jù)。反復執(zhí)行上面的步驟,就能完成排序工作,排序過程不會超過7趟。這種排序的方法稱為冒泡排序。

上面的分析具有一般性,如果數(shù)據(jù)列有n個數(shù)據(jù)組成,至多經過n-1趟排序,就能完成整個排序過程.

試題詳情

6.將新數(shù)據(jù)列中的第6個數(shù)97與右邊相鄰的數(shù)27進行比較,因為27<97,97應下沉,所以順序改變,得到新的數(shù)據(jù)列:

{38,49,65, 76, 13,97,27,49}

試題詳情

5.將新數(shù)據(jù)列中的第5個數(shù)97與右邊相鄰的數(shù)13進行比較,因為13<97,97應下沉,所以順序改變,得到新的數(shù)據(jù)列:

{38,49,65, 76, 13,97,27,49}

試題詳情

4.將新數(shù)據(jù)列中的第4個數(shù)97與右邊相鄰的數(shù)76進行比較,因為76<97,97應下沉,所以順序不變,得到新的數(shù)據(jù)列:

{38,49,65, 76,97,13,27,49}

試題詳情


同步練習冊答案