查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對(duì)任意不小于2的正整數(shù)恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)過(guò)的直線與軌跡交于、兩點(diǎn),又過(guò)、作軌跡的切線,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

第Ⅰ卷

、選擇題

題號(hào)

1

2

3

4

5

6

7

8

答案

B

B

B

A

C

A

D

C

 

第Ⅱ卷

填空題

9、3 , ;    10、;     11、(A); (B);(C)();    12、0.5       13、28 ,

、解答題

14、(本小題滿分12分)

解:(Ⅰ)

                       =+

                       =+

  所以,的最小正周期 

(Ⅱ)

    

由三角函數(shù)圖象知:

的取值范圍是

 

 

 

 

15、(本小題滿分12分)

方法一:

證:(Ⅰ)在Rt△BAD中,AD=2,BD=,

AB=2,ABCD為正方形,

因此BDAC.                    

PA⊥平面ABCD,BDÌ平面ABCD,

BDPA .                      

又∵PAAC=A

BD⊥平面PAC.                 

解:(Ⅱ)由PA⊥面ABCD,知AD為PD在平面ABCD的射影,又CDAD

CDPD,知∠PDA為二面角PCDB的平面角.                      

又∵PA=AD,

∴∠PDA=450 .                                                       

(Ⅲ)∵PA=AB=AD=2

PB=PD=BD=

設(shè)C到面PBD的距離為d,由

,                              

,

         

方法二:

證:(Ⅰ)建立如圖所示的直角坐標(biāo)系,

A(0,0,0)、D(0,2,0)、P(0,0,2).

在Rt△BAD中,AD=2,BD=,

AB=2.

B(2,0,0)、C(2,2,0),

  

BDAP,BDAC,又APAC=A

BD⊥平面PAC.                       

解:(Ⅱ)由(Ⅰ)得.

設(shè)平面PCD的法向量為,則,

,∴

故平面PCD的法向量可取為                              

PA⊥平面ABCD,∴為平面ABCD的法向量.             

設(shè)二面角P―CD―B的大小為q,依題意可得,

q = 450 .                                                      

(Ⅲ)由(Ⅰ)得

設(shè)平面PBD的法向量為,則,

,∴x=y=z

故平面PBD的法向量可取為.                             

,

C到面PBD的距離為                          

 

 

16、(本小題滿分14分)

解:(1)設(shè)“甲射擊4次,至少1次未擊中目標(biāo)”為事件A,則其對(duì)立事件為“4次均擊中目標(biāo)”,則

(2)設(shè)“甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次”為事件B,則

(3)設(shè)“乙恰好射擊5次后,被中止射擊”為事件C,由于乙恰好射擊5次后被中止射擊,故必然是最后兩次未擊中目標(biāo),第三次擊中目標(biāo),第一次及第二次至多有一次未擊中目標(biāo)。

 

17、(本小題滿分14分)

解:(Ⅰ)由  得

可得

因?yàn)?sub>,所以   解得,因而

 (Ⅱ)因?yàn)?sub>是首項(xiàng)、公比的等比數(shù)列,故

則數(shù)列的前n項(xiàng)和

前兩式相減,得 

   即 

 

 

18、(本小題滿分14分)

解:(1) ,設(shè)切點(diǎn)為,則曲線在點(diǎn)P的切線的斜率,由題意知有解,

.

 (2)若函數(shù)可以在時(shí)取得極值,

有兩個(gè)解,且滿足.

易得.

(3)由(2),得.

根據(jù)題意,()恒成立.

∵函數(shù))在時(shí)有極大值(用求導(dǎo)的方法),

且在端點(diǎn)處的值為.

∴函數(shù))的最大值為.  

所以.

 

19、(本小題滿分14分)

解:(1)∵成等比數(shù)列 ∴ 

設(shè)是橢圓上任意一點(diǎn),依橢圓的定義得

 

為所求的橢圓方程.

(2)假設(shè)存在,因與直線相交,不可能垂直

因此可設(shè)的方程為:

  ①

方程①有兩個(gè)不等的實(shí)數(shù)根

 ②

設(shè)兩個(gè)交點(diǎn)、的坐標(biāo)分別為 ∴

∵線段恰被直線平分 ∴

 ∴ ③ 把③代入②得

  ∴ ∴解得

∴直線的傾斜角范圍為

 

 

 


同步練習(xí)冊(cè)答案