如圖.在⊙O中.AB為直徑.AD為弦.過(guò)B點(diǎn)的切線與AD的延長(zhǎng)線交于點(diǎn)C.且AD=DC.則sin∠ACO= 查看更多

 

題目列表(包括答案和解析)

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
AB與OP交于點(diǎn)M,設(shè)CD為過(guò)點(diǎn)M且不過(guò)圓心O的一條弦,
求證:O,C,P,D四點(diǎn)共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2sin(),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C所截得的弦長(zhǎng).
D.選修4-5(不等式選講)
已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
AB與OP交于點(diǎn)M,設(shè)CD為過(guò)點(diǎn)M且不過(guò)圓心O的一條弦,
求證:O,C,P,D四點(diǎn)共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2sin(),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C所截得的弦長(zhǎng).
D.選修4-5(不等式選講)
已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
AB與OP交于點(diǎn)M,設(shè)CD為過(guò)點(diǎn)M且不過(guò)圓心O的一條弦,
求證:O,C,P,D四點(diǎn)共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[
 
1
1
],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2
2
sin(θ-
π
4
),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長(zhǎng).
D.選修4-5(不等式選講)
已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

CACD CCBA

9、      10、2:1      11、    12、      13、4

14、a<-1   15、

 

16、17、解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

         bn=8+8×(n-1)=8n                                   …………5分

(II)                   …………6分

                

 

                                                    …………12分

18、(1)3

(2)底面邊長(zhǎng)為2,高為4是,體積最大,最大體積為16

19、

略解、(1)因?yàn)閒′(x)=3ax2+2x-1,依題意存在(2,+∞)的非空子區(qū)間使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子區(qū)間上恒成立,令h(x)=,求得h(x)的最小值為,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在區(qū)間()上是減函數(shù), 即f(x)在區(qū)間()上恒大于零。故當(dāng)a>0時(shí),函數(shù)在f(x)在區(qū)間()上不存在零點(diǎn)

20、(1)f(1)=3………………………………………………………………………………(1分)

        f(2)=6………………………………………………………………………………(2分)

        當(dāng)x=1時(shí),y=2n,可取格點(diǎn)2n個(gè);當(dāng)x=2時(shí),y=n,可取格點(diǎn)n個(gè)

        ∴f(n)=3n…………………………………………………………………………(4分)

  

   (2)………………………………………………(9分)

       

        ∴T1<T2=T3>T4>…>Tn

        故Tn的最大值是T2=T3=

        ∴m≥………………………………………………………………()

 

 

21、解:(Ⅰ)設(shè),

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴動(dòng)點(diǎn)M的軌跡C是以O(shè)(0,0)為頂點(diǎn),以(1,0)為焦點(diǎn)的拋物線(除去原點(diǎn)).

             …………………………………………5分

(Ⅱ)解法一:(1)當(dāng)直線垂直于軸時(shí),根據(jù)拋物線的對(duì)稱性,有;

                                                         ……………6分

(2)當(dāng)直線軸不垂直時(shí),依題意,可設(shè)直線的方程為,,則A,B兩點(diǎn)的坐標(biāo)滿足方程組

消去并整理,得

,

.   ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

.

綜合(1)、(2)可知.                  …………………10分

解法二:依題意,設(shè)直線的方程為,,則A,B兩點(diǎn)的坐標(biāo)滿足方程組:

消去并整理,得

,

. ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

,

.        ……………………………………………………10分

(Ⅲ)假設(shè)存在滿足條件的直線,其方程為,AD的中點(diǎn)為AD為直徑的圓相交于點(diǎn)F、G,FG的中點(diǎn)為H,則,點(diǎn)的坐標(biāo)為.

,

,

 .                  …………………………12分

,

,得

此時(shí),.

∴當(dāng),即時(shí),(定值).

∴當(dāng)時(shí),滿足條件的直線存在,其方程為;當(dāng)時(shí),滿足條件的直線不存在.    

 

 

 


同步練習(xí)冊(cè)答案