22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對(duì)任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)過(guò)的直線與軌跡交于兩點(diǎn),又過(guò)作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、選擇題

1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

2,4,6

2,4,6

三、解答題

17.(本小題滿分12分)

       解證:(I)

       由余弦定理得              …………4分

       又                                               …………6分

     (II)

                                          …………10分

                                                          

       即函數(shù)的值域是                                                          …………12分

18.(本小題滿分12分)

       解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

                                                                        …………5分

(II)                   …………6分

                                                         …………7分

              …………9分

                                       …………12分

19.(本小題滿分12分)

     (I)證明:依題意知:

                                      …………2分

     …4分

   (II)由(I)知平面ABCD

       ∴平面PAB⊥平面ABCD.                        …………4分

     在PB上取一點(diǎn)M,作MNAB,則MN⊥平面ABCD,

       設(shè)MN=h

       則

                            …………6分

       要使

       即MPB的中點(diǎn).                                                                  …………8分

           建立如圖所示的空間直角坐標(biāo)系

           則A(0,0,0),B(0,2,0),

           C(1,1,0),D(1,0,0),

           P(0,0,1),M(0,1,

           由(I)知平面,則

           的法向量。                   …………10分

           又為等腰

          

           因?yàn)?sub>

           所以AM與平面PCD不平行.                                                  …………12分

    20.(本小題滿分12分)

           解:(I)已知

           只須后四位數(shù)字中出現(xiàn)2個(gè)0和2個(gè)1.

                                                 …………4分

       (II)的取值可以是1,2,3,4,5,.

          

                                                                  …………8分

           的分布列是

       

    1

    2

    3

    4

    5

    P

                                                                                                          …………10分

                     …………12分

       (另解:記

           .)

    21.(本小題滿分12分)

           解:(I)設(shè)M,

            由

           于是,分別過(guò)A、B兩點(diǎn)的切線方程為

             ①

             ②                           …………2分

           解①②得    ③                                                 …………4分

           設(shè)直線l的方程為

           由

             ④                                               …………6分

           ④代入③得

           即M

           故M的軌跡方程是                                                      …………7分

       (II)

          

                                                                                     …………9分

       (III)

           的面積S最小,最小值是4                      …………11分

           此時(shí),直線l的方程為y=1                                                      …………12分

    22.(本小題滿分14分)

           解:(I)                           …………2分

           由                                                           …………4分

          

           當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                         …………6分

           當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                          …………8分

       (II)當(dāng)上單調(diào)遞增,因此

          

                                                                                                          …………10分

           上單調(diào)遞減,

           所以值域是                           …………12分

           因?yàn)樵?sub>

                                                                                                          …………13分

           所以,a只須滿足

           解得

           即當(dāng)、使得成立.

                                                                                                          …………14分

     

     


    同步練習(xí)冊(cè)答案