即.在恒成立 ----①----3分 查看更多

 

題目列表(包括答案和解析)

已知

(1)求函數上的最小值

(2)對一切的恒成立,求實數a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

時,單調遞減,在單調遞增,當,即時,,

第二問中,,則,

單調遞增,,,單調遞減,,因為對一切,恒成立, 

第三問中問題等價于證明,,

由(1)可知的最小值為,當且僅當x=時取得

,,則,易得。當且僅當x=1時取得.從而對一切,都有成立

解:(1)時,單調遞減,在單調遞增,當,即時,,

                 …………4分

(2),則

,單調遞增,,,單調遞減,,因為對一切,恒成立,                                             …………9分

(3)問題等價于證明,,

由(1)可知的最小值為,當且僅當x=時取得

,,則,易得。當且僅當x=1時取得.從而對一切,都有成立

 

查看答案和解析>>

已知函數

(Ⅰ)求函數的單調區(qū)間;

(Ⅱ)設,若對任意,,不等式 恒成立,求實數的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,

故也是最小值點,所以;            ............6分

當b<1時,

時,;

當b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實數b的取值范圍是 

 

查看答案和解析>>

(本小題滿分12分)已知函數

(I)若函數在區(qū)間上存在極值,求實數a的取值范圍;

(II)當時,不等式恒成立,求實數k的取值范圍.

(Ⅲ)求證:解:(1),其定義域為,則,

,

時,;當時,

在(0,1)上單調遞增,在上單調遞減,

即當時,函數取得極大值.                                       (3分)

函數在區(qū)間上存在極值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,則,

,即上單調遞增,                          (7分)

,從而,故上單調遞增,       (7分)

          (8分)

(3)由(2)知,當時,恒成立,即

,則,                               (9分)

                                                                       (10分)

以上各式相加得,

,

                           

                                        (12分)

。

 

查看答案和解析>>

已知函數,

(1)求函數的定義域;

(2)求函數在區(qū)間上的最小值;

(3)已知,命題p:關于x的不等式對函數的定義域上的任意恒成立;命題q:指數函數是增函數.若“p或q”為真,“p且q”為假,求實數m的取值范圍.

【解析】第一問中,利用由 即

第二問中,,得:

,

第三問中,由在函數的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數函數.因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。

解:(1)由 即

(2)得:

,

(3)由在函數的定義域上 的任意,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數函數.因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時,

當命題p為假,命題q為真時,

所以

 

查看答案和解析>>

在數列中,,其中,對任意都有:;(1)求數列的第2項和第3項;

(2)求數列的通項公式,假設,試求數列的前項和

(3)若對一切恒成立,求的取值范圍。

【解析】第一問中利用)同理得到

第二問中,由題意得到:

累加法得到

第三問中,利用恒成立,轉化為最小值大于等于即可。得到范圍。

(1)同理得到             ……2分 

(2)由題意得到:

 又

              ……5分

 ……8分

(3)

 

查看答案和解析>>


同步練習冊答案