(2)若直線MN的斜率為-1,且原點(diǎn)到直線MN的距離為4(-1),求此時(shí)的橢圓方程, 查看更多

 

題目列表(包括答案和解析)

如圖,已知過原點(diǎn)O從x軸正方向出發(fā)逆時(shí)針旋轉(zhuǎn)240°得到射線t,點(diǎn)A(x,y)在射線t上(x<0,y<0=,設(shè)|OA|=m,又知點(diǎn)B在射線y=0(x<0=上移動(dòng),設(shè)P為第三象限內(nèi)的動(dòng)點(diǎn),若·=0,且·,·,||2成等差數(shù)列.

(1)試問點(diǎn)P的軌跡是什么曲線?

(2)已知直線l的斜率為,若直線l與曲線C有兩個(gè)不同的交點(diǎn)M,N,設(shè)線段MN的中點(diǎn)為Q,求點(diǎn)Q的橫坐標(biāo)的取值范圍.

查看答案和解析>>

(理)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰與直線l也相切,切點(diǎn)為T,求橢圓的方程及點(diǎn)T的坐標(biāo);

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且()p2=m,m∈[,],求(1)中切點(diǎn)T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰好過點(diǎn)F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且()p2=m,m∈[,],求直線PQ的斜率的取值范圍.

查看答案和解析>>

(理)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰與直線l也相切,切點(diǎn)為T,求橢圓的方程及點(diǎn)T的坐標(biāo);

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且p2=m,m∈,求(1)中切點(diǎn)T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰好過點(diǎn)F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且=m,m∈,求直線PQ的斜率的取值范圍.

查看答案和解析>>

已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0),以F1(-c,0)為圓心,以a-c為半徑作圓F1,過點(diǎn)B2(0,b)作圓F1的兩條切線,設(shè)切點(diǎn)為M、N.
(1)若過兩個(gè)切點(diǎn)M、N的直線恰好經(jīng)過點(diǎn)B1(0,-b)時(shí),求此橢圓的離心率;
(2)若直線MN的斜率為-1,且原點(diǎn)到直線MN的距離為4(
2
-1),求此時(shí)的橢圓方程;
(3)是否存在橢圓E,使得直線MN的斜率k在區(qū)間(-
2
2
,-
3
3
)內(nèi)取值?若存在,求出橢圓E的離心率e的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為2,過其右焦點(diǎn)且傾斜角為45°的直線被雙曲線截得的弦MN的長(zhǎng)為6.
(Ⅰ)求此雙曲線的方程;
(Ⅱ)若直線l:y=kx+m與該雙曲線交于兩個(gè)不同點(diǎn)A、B,且以線段AB為直徑的圓過原點(diǎn),求定點(diǎn)Q(0,-1)到直線l的距離d的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>


同步練習(xí)冊(cè)答案