已知橢圓的左.右焦點分別為..過的直線交橢圓于B.D兩點.過的直線交橢圓于A.C兩點.且.垂足為P. 查看更多

 

題目列表(包括答案和解析)

已知橢圓的左、右焦點分別為,, 點是橢圓的一個頂點,△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點分別作直線,交橢圓于兩點,設兩直線的斜率分別為,,且,證明:直線過定點().

 

查看答案和解析>>

已知橢圓的左、右焦點分別為,,過的直線交橢圓于B,D兩點,過的直線交橢圓于A,C兩點,且,垂足為P.

(Ⅰ)設P點的坐標為,證明:

(Ⅱ)求四邊形ABCD的面積的最小值.

 

 

查看答案和解析>>

已知橢圓的左、右焦點分別為,,橢圓的離心率為且經(jīng)過點.M為橢圓上的動點,以M為圓心,M為半徑作圓M.
(1)求橢圓C的標準方程;
(2)若圓M與y軸有兩個交點,求點M橫坐標的取值范圍;
(3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說明理由.

查看答案和解析>>

已知橢圓的左、右焦點分別為,, 點是橢圓的一個頂點,△是等腰直角三角形.
(1)求橢圓的方程;
(2)設點是橢圓上一動點,求線段的中點的軌跡方程;
(3)過點分別作直線,交橢圓于兩點,設兩直線的斜率分別為, ,且,探究:直線是否過定點,并說明理由.

查看答案和解析>>

已知橢圓的左、右焦點分別為, 點是橢圓的一個頂點,△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點分別作直線,交橢圓于,兩點,設兩直線的斜率分別為,,且,證明:直線過定點().

查看答案和解析>>

一、選擇題

       1.C            2.B            3.B            4.D                   5.B              6.C    

7.D            8.C       9.C       10.C

二、填空題

       11.           12.                  13.                   14.2            15.30°

三、解答題

16.解:(Ⅰ)由,根據(jù)正弦定理得,所以,

為銳角三角形得.………………………………………………7分

(Ⅱ)根據(jù)余弦定理,得

所以,.………………………………………………14分

17.解:(Ⅰ)記表示事件:“位顧客中至少位采用一次性付款”,則表示事件:“位顧客中無人采用一次性付款”.

,

.………………………………………………7分

(Ⅱ)記表示事件:“位顧客每人購買件該商品,商場獲得利潤不超過元”.

表示事件:“購買該商品的位顧客中無人采用分期付款”.

表示事件:“購買該商品的位顧客中恰有位采用分期付款”.

.……………………………………14分

18.解法一:(1)作,垂足為,連結(jié),由側(cè)面底面,得底面

因為,所以,又,故為等腰直角三角形,,

由三垂線定理,得.………………………7分

(Ⅱ)由(Ⅰ)知

依題設,

,由,,

,作,垂足為,

平面,連結(jié)為直線與平面所成的角.

所以,直線與平面所成角的正弦值為.………………………………………………14分

解法二:(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得平面

因為,所以

為等腰直角三角形,

如圖,以為坐標原點,軸正向,建立直角坐標系,

因為,,

,所以,

,

,,,,所以.…………………7分

(Ⅱ),.

的夾角記為,與平面所成的角記為,因為為平面的法向量,所以互余.

,,

所以,直線與平面所成角的正弦值為.………………………14分

19.解:(Ⅰ),

因為函數(shù)取得極值,則有,

解得.………………………7分

(Ⅱ)由(Ⅰ)可知,,

時,

時,;

時,

所以,當時,取得極大值,又,

則當時,的最大值為

因為對于任意的,有恒成立,

所以 ,

解得 

因此的取值范圍為.………………………14分

20.解:(Ⅰ)設的公差為,的公比為,則依題意有

解得,

所以,

.………………………6分

(Ⅱ)

,①

,②

②-①得

.………………………12分

21.證明:(Ⅰ)橢圓的半焦距,

知點在以線段為直徑的圓上,

所以,.………………………6分

(Ⅱ)(?)當的斜率存在且時,的方程為,代入橢圓方程,并化簡得

,則

,

;

因為相交于點,且的斜率為

所以,

四邊形的面積

時,上式取等號.………………………10分

(?)當的斜率或斜率不存在時,四邊形的面積.……………………11分

綜上,四邊形的面積的最小值為.………………………12分

 

 

 


同步練習冊答案