(為正整數(shù))依次是直線上的點.這組拋物線與軸正半軸的交點依次是: 查看更多

 

題目列表(包括答案和解析)

已知:如圖,直線經(jīng)過點一組拋物線的頂點為正整數(shù))依次是直線上的點,這組拋物線與軸正半軸的交點依次是:為正整數(shù)),設(shè)

   (1)求的值;                                                                                                            

   (2)求經(jīng)過點的拋物線的解析式(用含的代數(shù)式表示)                          

   (3)定義:若拋物線的頂點與軸的兩個交點構(gòu)成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”.

探究:當(dāng)的大小變化時,這組拋物線中是否存在美麗拋物線?若存在,請你求出相應(yīng)的的值.                                                                                                                   

 


查看答案和解析>>

定義:若拋物線的頂點與x軸的兩個交點構(gòu)成的三角形是直角三角形,則稱這種拋物線為“美麗拋物線”。
已知,如圖一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn)(n是正整數(shù))依次是直線上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0)(n是正整數(shù)),設(shè)x1=a(0<a<1)。則當(dāng)a=(    )時,這組拋物線中存在美麗拋物線。

查看答案和解析>>

已知:如圖,直線l:y=
1
3
x+b,經(jīng)過點M(0,
1
4
),一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n為正整數(shù))依次是直線l上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),設(shè)x1=d(0<d<1).
(1)求b的值;
(2)求經(jīng)過點A1、B1、A2的拋物線的解析式(用含d的代數(shù)式表示);
(3)定義:若拋物線的頂點與x軸的兩個交點構(gòu)成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”.探究:當(dāng)d(0<d<1)的大小變化時,這組拋物線中是否存在美麗拋物線?若存在,請你求出相應(yīng)的d的值.
精英家教網(wǎng)

查看答案和解析>>

已知:如圖,直線l:y=
1
3
x+b
經(jīng)過點M(0,
1
4
),一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),L,Bn(n,yn)(n為正整數(shù))依次是直線l上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),L,An+1(xn+1,0)(n為正整數(shù)),設(shè)x1=d(0<d<1).
(1)求b的值;
(2)若d=
1
2
,求經(jīng)過點A1、B1、A2的拋物線的解析式;
(3)定義:若拋物線的頂點與x軸的兩個交點構(gòu)成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”.
探究:當(dāng)d(0<d<1)的大小變化時,這組拋物線中是否存在美麗拋物線?若存在,請你求出相應(yīng)的d的值.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為 (-
b
2a
,
4ac-b2
4a
),對稱軸x=-
b
2a

精英家教網(wǎng)

查看答案和解析>>

如圖,直線l:y=
1
3
x+
1
4
經(jīng)過點M,一組拋物線的頂點B1(1,y),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n為正整數(shù))依次是直線l上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0)(n為正整數(shù)),設(shè)x1=d(0<d<1).
(1)求經(jīng)過點A1、B1、A2的拋物線的解析式(用含d的代數(shù)式表示);
(2)若拋物線的頂點與x軸的兩個交點構(gòu)成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”,那么當(dāng)d的大小在0<d<1范圍內(nèi)變化時,這組拋物線中是否存在美麗拋物線?若存在,請求出相應(yīng)的d的值,若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案