已知:拋物線與軸相交于兩點(diǎn).且. 查看更多

 

題目列表(包括答案和解析)

已知:拋物線y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為
3
,拋物線與x軸交于點(diǎn)P、Q,問是否精英家教網(wǎng)存在過P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

精英家教網(wǎng)已知:拋物線y=ax2+bx+c經(jīng)過原點(diǎn)(0,0)和A(1,-3),B(-1,5)兩點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為C,以O(shè)C為直徑作⊙M,如果過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,且與y軸的正半軸交點(diǎn)為E,連接MD,已知E點(diǎn)的坐標(biāo)為(0,m),求四邊形EOMD的面積(用含m的代數(shù)式表示);
(3)延長DM交⊙M于點(diǎn)N,連接ON,OD,當(dāng)點(diǎn)P在(2)的條件下運(yùn)動(dòng)到什么位置時(shí),能使得四邊形EOMD和△DON的面積相等,請求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

已知:拋物線M:y=x2+(m-1)x+(m-2)與x軸相交于A(x1,0),B(x2,0)兩點(diǎn),且x1<x2
(Ⅰ)若x1x2<0,且m為正整數(shù),求拋物線M的解析式;
(Ⅱ)若x1<1,x2>1,求m的取值范圍;
(Ⅲ)試判斷是否存在m,使經(jīng)過點(diǎn)A和點(diǎn)B的圓與y軸相切于點(diǎn)C(0,2)?若存在,求出m的值;若不存在,試說明理由;
(Ⅳ)若直線l:y=kx+b過點(diǎn)F(0,7),與(Ⅰ)中的拋物線M相交于P,Q兩點(diǎn),且使
PF
FQ
=
1
2
,求直線l的解析式.

查看答案和解析>>

已知:拋物線y=-x2+mx+2m2(m>0)與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,C是拋物線上一精英家教網(wǎng)個(gè)動(dòng)點(diǎn)(點(diǎn)C與點(diǎn)A、B不重合),D是OC的中點(diǎn),連接BD并延長,交AC于點(diǎn)E.
(1)用含m的代數(shù)式表示點(diǎn)A、B的坐標(biāo);
(2)求
CE
AE
的值;
(3)當(dāng)C、A兩點(diǎn)到y(tǒng)軸的距離相等,且S△CED=
8
5
時(shí),求拋物線和直線BE的解析式.

查看答案和解析>>

已知:拋物線y=-x2+(k+1)x+2k+1經(jīng)過點(diǎn)A(0,3).
(1)求k的值;
(2)設(shè)拋物線交x軸于B、C兩點(diǎn)(B在C右邊),點(diǎn)P(m,n)是拋物線上的一個(gè)動(dòng)點(diǎn),且位于直線AB上方,設(shè)△PAB的面積為s,試寫出s關(guān)于x的函數(shù)關(guān)系式,并求出s的最大值;
(3)平行于x軸的一條直線交拋物線于E、F兩點(diǎn),若以EF為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>


同步練習(xí)冊答案