∵AB⊥平面BCE.CD⊥平面BCE.∴2CD BA. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,已知AB⊥平面BCE,CD∥AB,△BCE是正三角形,AB=BC=2CD.
(Ⅰ)若F是BE的中點,求證CF∥平面ADE;
(Ⅱ)求證:平面ADE⊥平面ABE;

查看答案和解析>>

精英家教網(wǎng)如圖,已知AB⊥平面BCE,CD∥ab,△BCE是正三角形,AB=BC=2CD.
(Ⅰ)在線段BE上是否存在一點F,使CF∥平面ADE?
(Ⅱ)求證:平面ADE⊥平面ABE;
(Ⅲ)求二面角A-DE-B的正切值.

查看答案和解析>>

(2011•昌平區(qū)二模)在空間五面體ABCDE中,四邊形ABCD是正方形,AB⊥平面BCE,∠CBE=90°.
點F是BE的中點.求證:
(I)ED∥平面ACF
(II)AC⊥平面BDF.

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=4,∠BCE=60°.
(1)證明:平面BAE⊥平面DAE;
(2)點P為線段AB上一點,求直線PE與平面DCE所成角的取值范圍.

查看答案和解析>>

精英家教網(wǎng)精英家教網(wǎng)如圖甲,直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點,E在BC上,且EF∥AB,已知AB=AD=CE=2,現(xiàn)沿EF把四邊形CDFE折起如圖乙,使平面CDFE⊥平面ABEF.
(Ⅰ)求證:AD∥平面BCE;
(Ⅱ)求證:AB⊥平面BCE;
(Ⅲ)求三棱錐C-ADE的體積.

查看答案和解析>>


同步練習冊答案