二.13. 12 14. 3 15. (2,0) 16. 查看更多

 

題目列表(包括答案和解析)

探究f(x)=x+
1
x
,x∈(0,+∞)
的最小值,并確定相應(yīng)的x的值,類(lèi)表如下:
x
1
4
1
3
1
2
1 2 3 4
y
17
4
10
3
5
2
2
5
2
10
3
17
4

請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成下列的問(wèn)題:
(1)若x1x2=1,則f(x1
 
f(x2)(請(qǐng) 用“>”、“<”或“=”填上);若函數(shù)f(x)=x+
1
x
,(x>0)
在區(qū)間(0,1)上單調(diào)遞減,則在區(qū)間
 
上單調(diào)遞增.
(2)當(dāng)x=
 
時(shí),f(x)=x+
1
x
,(x>0)
的最小值為
 

(3)證明函數(shù)f(x)=x+
1
x
在區(qū)間(1,+∞)上為單調(diào)增函數(shù).

查看答案和解析>>

已知f(x)是R上的增函數(shù),且函數(shù)f(x)的部分對(duì)應(yīng)值如下表:
x -1 0 1 2 3 4
f(x) -2 -1 -
1
3
1
2
1 2
則-1<f(x+1)<1的解集是(  )

查看答案和解析>>

已知f(x)是R上的增函數(shù),且函數(shù)f(x)的部分對(duì)應(yīng)值如下表:
x -1 0 1 2 3 4
f(x) -2 -1 -
1
3
1
2
1 2
則-1<f(x+1)<1的解集是( 。
A.(-1,2)B.(1,3)C.(-∞,-1)∪[3,+∞)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

患感冒與晝夜溫差大小相關(guān),居居小區(qū)診所的某醫(yī)生記錄了四月份四個(gè)周一的溫差情況與因患感冒到診所看病的人數(shù)如下表:
晝夜溫差x(℃) 11 13 12 8
感冒就診人數(shù)y(人) 25 29 26 16
用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程為
y=
18
7
x-
30
7
y=
18
7
x-
30
7

(參考公式:
b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
 
a=
.
y
-b
.
x
.)

查看答案和解析>>

(2012•商丘三模)某高中三年級(jí)有一個(gè)實(shí)驗(yàn)班和一個(gè)對(duì)比班,各有50名同學(xué).根據(jù)這兩個(gè)班市二模考    試的數(shù)學(xué)科目成績(jī)(規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀),統(tǒng)計(jì)結(jié)果如下:
實(shí)驗(yàn)班數(shù)學(xué)成績(jī)的頻數(shù)分布表:
分組 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140.150]
頻數(shù) 1 2 12 13 12 9 1 0
對(duì)比班數(shù)學(xué)成績(jī)的頻數(shù)分布表:
分組 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140.150]
頻數(shù) 2 3 13 11 9 10 1 1
(Ⅰ)分別求這兩個(gè)班數(shù)學(xué)成績(jī)的優(yōu)秀率;若采用分層抽樣從實(shí)驗(yàn)班中抽取15位同學(xué)的數(shù)學(xué)試卷,進(jìn)行試卷分析,則從該班數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的試卷中應(yīng)抽取多少份?
(Ⅱ)統(tǒng)計(jì)學(xué)中常用M值作為衡量總體水平的一種指標(biāo),已知M與分?jǐn)?shù)t的關(guān)系式為:M=
-2(t<90)
2(90≤t<120)
4(t≥120).
,分別求這兩個(gè)班學(xué)生數(shù)學(xué)成績(jī)的M總值,并據(jù)此對(duì)這兩個(gè)班數(shù)學(xué)成績(jī)總體水平作一簡(jiǎn)單評(píng)價(jià).

查看答案和解析>>


同步練習(xí)冊(cè)答案