題目列表(包括答案和解析)
如圖,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點.
(Ⅰ)證明:OD//平面ABC;
(Ⅱ)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.
【解析】第一問:取AC中點F,連結(jié)OF、FB.∵F是AC的中點,O為CE的中點,
∴OF∥EA且OF=且BD=
∴OF∥DB,OF=DB,
∴四邊形BDOF是平行四邊形。
∴OD∥FB
第二問中,當(dāng)N是EM中點時,ON⊥平面ABDE。 ………7分
證明:取EM中點N,連結(jié)ON、CM, AC=BC,M為AB中點,∴CM⊥AB,
又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,
∴CM⊥面ABDE,∵N是EM中點,O為CE中點,∴ON∥CM,
∴ON⊥平面ABDE。
如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;
(Ⅱ)若為側(cè)棱PB的中點,求直線AE與底面所成角的正弦值.
【解析】第一問中,利用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以第二問中結(jié)合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,
則為直線AE與底面ABC 所成角,
解
(Ⅰ) 證明:由用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以
………………………………………………6分
(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,
因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,
又EH//PO,所以EH平面ABC ,
則為直線AE與底面ABC 所成角,
且………………………………………10分
又PO=1/2AC=,也所以有EH=1/2PO=,
由(Ⅰ)已證平面PBC,所以,即,
故,
于是
所以直線AE與底面ABC 所成角的正弦值為
過△ABC的重心作一直線分別交AB,AC 于D,E,若 ,(),則的值為( )
A 4 B 3 C 2 D 1
(12分)
學(xué)校欲在操場邊上一直角三角形空地ABC上種植草坪,并需鋪設(shè)一根水管EF(E在AC上,F(xiàn)在AB上)用于灌溉,已知∠A=30°,∠C=90°,BC=2a,D是BC中點,為確保灌溉的效果,鋪設(shè)時要求∠EDF=60°,F(xiàn)有兩種方案可供參考。甲方案:取AC的中點E鋪設(shè)水管;乙方案:取AB的中點F鋪設(shè)水管。
(1)比較甲乙兩種方案,哪一種方案更合理(EF的長較小的合理);
(2)學(xué)校研究小組通過研究得出:無論D在BC的什么位置,總存在E,F(xiàn)兩點,使△DEF為正三角形。試證明該結(jié)論的正確性。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com