例1.求證:正弦函數(shù)沒(méi)有比2π小的正周期說(shuō)明1:反證法適用的范圍:一般情況下.結(jié)論的反面比原結(jié)論更具體.更簡(jiǎn)單的命題.如“不是 .“不可能 .“至多(少)若干個(gè) .“存在 .“唯一 等易用反證法,已知條件很少或由已知推得的結(jié)論很少的命題易用反證法,關(guān)系不明確或難于直接證明的命題易用反證法.學(xué)生探究過(guò)程:綜合法與分析法.說(shuō)明2:反證法不是證明原命題.而是證明另一問(wèn)題.因此是一種間接證法.說(shuō)明3:反證法導(dǎo)出的矛盾導(dǎo)出是與已知法則相矛盾.這種矛盾可分為三類:與已知條件矛盾.與已知的定義矛盾.與反設(shè)得到的結(jié)論及臨時(shí)假設(shè)自相矛盾.練習(xí):教材P83---3,4 查看更多

 

題目列表(包括答案和解析)

求證:正弦函數(shù)沒(méi)有比2π小的正周期.

查看答案和解析>>

若存在常數(shù)L,使得對(duì)任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
(1)求證:正弦函數(shù)f(x)=sinx在開(kāi)區(qū)間(0,
π2
)
上滿足L-條件;
(2)如果存在實(shí)數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

查看答案和解析>>

若存在常數(shù)L,使得對(duì)任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
(1)求證:正弦函數(shù)f(x)=sinx在開(kāi)區(qū)間數(shù)學(xué)公式上滿足L-條件;
(2)如果存在實(shí)數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

查看答案和解析>>

若存在常數(shù)L,使得對(duì)任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
(1)求證:正弦函數(shù)f(x)=sinx在開(kāi)區(qū)間上滿足L-條件;
(2)如果存在實(shí)數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

查看答案和解析>>

設(shè)函數(shù)對(duì)任意x,y,都有<0;f(1)=-2.

(1)求證是奇函數(shù);

(2)試問(wèn)在是否有最值?如果有求出最值;如果沒(méi)有,說(shuō)明理由

查看答案和解析>>


同步練習(xí)冊(cè)答案