16.對于函數(shù)( )有下列命題: 查看更多

 

題目列表(包括答案和解析)

有下列命題:
①函數(shù)y=f (-x+2)與y=f (x-2)的圖象關(guān)于y軸對稱;
②若函數(shù)f(x)=ex,則?x1,x2∈R,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

③若函數(shù)f(x)=loga|x|(a>0,a≠1)在(0,+∞)上單調(diào)遞增,則f(-2)>f(a+1);
④若函數(shù)f(x+2010)=x2-2x-1(x∈R),則函數(shù)f(x)的最小值為-2.
其中真命題的序號是
 

查看答案和解析>>

有下列命題:①函數(shù)y=f(x+1)是偶函數(shù),則函數(shù)y=f(x)的對稱軸方程為x=-1;②f(x)=
1-x2
+
x2-1
既是奇函數(shù),又是偶函數(shù);③奇函數(shù)的圖象必過原點(diǎn);④已知函數(shù)f(x)=x2+bx+c對于任意實(shí)數(shù)t都有f(2+t)=f(2-t),則f(4),f(2),f(-2)由小到大的順序?yàn)閒(4)<f(2)<f(-2).其中正確的序號為
 

查看答案和解析>>

有下列命題:①偶函數(shù)的圖象一定與y軸相交;
②奇函數(shù)的圖象一定經(jīng)過原點(diǎn);
③定義在R上的奇函數(shù)f(x)必滿足f(0)=0;
④當(dāng)且僅當(dāng)f(0)=0(定義域關(guān)于原點(diǎn)對稱)時,f(x)既是奇函數(shù)又是偶函數(shù).
其中正確的命題有
 

查看答案和解析>>

有下列命題:①在函數(shù)y=cos(x-
π
4
)cos(x+
π
4
)
的圖象中,相鄰兩個對稱中心的距離為π;②函數(shù)y=
x+3
x-1
的圖象關(guān)于點(diǎn)(-1,1)對稱;③關(guān)于x的方程ax2-2ax-1=0有且僅有一個實(shí)數(shù)根,則實(shí)數(shù)a=-1;④已知命題p:對任意的x∈R,都有sinx≤1,則?p是:存在,使得sinx>1.其中所有真命題的序號是
 

查看答案和解析>>

有下列命題:
①函數(shù)y=2x與y=log2x互為反函數(shù);
②函數(shù)y=
x2
與y=log22x是同一個函數(shù);
③函數(shù)y=2x與y=2-x的圖象關(guān)于x軸對稱;
④函數(shù)y=
2x-2-x
2
是遞增的奇函數(shù).
其中正確的是
 
.(把你認(rèn)為正確的命題的序號都填上)

查看答案和解析>>

 

一、選擇題:BCDBA  BBDCB  AC

二、填空題:

13.100   14. 8或-18    15.     16.①②③④ 

三、解答題:

17解:(1)∵   , 且與向量所成角為

∴   ,   ∴  ,            

,∴  ,即。    

(2)由(1)可得:

 ∴  

∵  ,     ∴  ,

∴  ,  ∴  當(dāng)=1時,A=   

∴AB=2,               則                        

18.解:(1)拿每個球的概率均為,兩球標(biāo)號的和是3的倍數(shù)有下列4種情況:

(1,2),(1,5),(2,4),(3,6)每種情況的概率為:

所以所求概率為:  

(2)設(shè)拿出球的號碼是3的倍數(shù)的為事件A,則,,拿4次至少得2分包括2分和4分兩種情況。

,     

19.解:(Ⅰ)取BC中點(diǎn)O,連結(jié)AO.

為正三角形,

 連結(jié),在正方形中,分別

的中點(diǎn),

由正方形性質(zhì)知

又在正方形中,,

平面

(Ⅱ)設(shè)AB1與A1B交于點(diǎn),在平面1BD中,

,連結(jié),由(Ⅰ)得

為二面角的平面角.

中,由等面積法可求得,

,

所以二面角的大小為

20.解:(1)由可得,

兩式相減得

   故{an}是首項(xiàng)為1,公比為3得等比數(shù)列  

.

   (2)設(shè){bn}的公差為d,由得,可得,可得,

        故可設(shè)

        又由題意可得解得

        ∵等差數(shù)列{bn}的各項(xiàng)為正,∴,∴ 

 ∴

21.解:,  ∴

⑴ 當(dāng)時,

0

0

極大值

極小值

極小值

化為 ,∴

⑵ 當(dāng)時,∴

當(dāng);當(dāng),

所以上的增函數(shù)無極小值

⑶ 當(dāng)時,

0

0

極大值

極小值

極小值(舍去)

綜上                                                 

 

22.解:(1)如圖,建立平面直角坐標(biāo)系,則D(-1,0)弦EF所在的直線方程為

設(shè)橢圓方程為設(shè),

知:  聯(lián)立方程組  ,

消去x得:

      由題意知:,

      由韋達(dá)定理知:

消去得:,化簡整理得:   解得:   

   即:橢圓的長軸長的取值范圍為。

(2)若D為橢圓的焦點(diǎn),則c=1,    由(1)知:  

      橢圓方程為:。

 


同步練習(xí)冊答案