題目列表(包括答案和解析)
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設(shè)切點(diǎn)為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過(guò)點(diǎn)A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫(huà)出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
(1)若α+β=,且a=2b,求α,β的值;
(2)若a·b=,求tanαtanβ的值.
(文)已知函數(shù)f(x)=-x2+4,設(shè)函數(shù)F(x)=
(1)求F(x)的表達(dá)式;
(2)解不等式1≤F(x)≤2;
(3)設(shè)mn<0,m+n>0,判斷F(m)+F(n)能否小于0?
(1)若f(-2)=0,求F(x)的表達(dá)式;
(2)在(1)的條件下,解不等式1≤|F(x)|≤2;
(3)設(shè)mn<0,m+n>0,試判斷F(m)+F(n)能否大于0?
(文)杭州風(fēng)景區(qū)有一家自行車租車公司,公司設(shè)有A、B、C三個(gè)營(yíng)業(yè)站,顧客可以從任何一處營(yíng)業(yè)站租車,并在任何一處營(yíng)業(yè)站還車.根據(jù)統(tǒng)計(jì)發(fā)現(xiàn)租車處與還車處有如下的規(guī)律性:
①在A站租車者有30%在A站還車,20%在B站還車,50%在C站還車;
②在B站租車者有70%在A站還車,10%在B站還車,20%在C站還車;
③在C站租車者有40%在A站還車,50%在B站還車,10%在C站還車.
記P(XY)表示“某車由X站租出還至Y站的概率”,P(XY)P(YZ)表示“某車由X站租出還至Y站,再由Y站租出還至Z站的概率”.按以上約定的規(guī)則,
(1)求P(CC);
(2)求P(AC)P(CB);
(3)設(shè)某輛自行車從A站租出,求此車歸還至某站再次出租后,回到A站的概率.
4x |
4x+m |
1 |
2 |
1 |
2 |
1 |
n |
2 |
n |
n-2 |
n |
n-1 |
n |
n |
n |
3n+1 |
6 |
f(m)+f(n) |
m+n |
1 |
2 |
1 |
x-1 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com