(I)試用表示, 查看更多

 

題目列表(包括答案和解析)

(1)設a>0,解關于y的不等式y2-2(
a
+
1
a
)y+1≤0
;
(2)對于任意給定的a≥2,由(1)所確定的y解集(用區(qū)間表示)記為I(a),我們規(guī)定:區(qū)間[m,n]的長度為n-m.如果I(a)的長度為r(a),試求當a取什么值時,r(a)取得最小值,并求r(a)的最小值及此時的I(a).

查看答案和解析>>

 

已知函數(shù)

   (I)試用含的代數(shù)式表示;

   (Ⅱ)求的單調(diào)區(qū)間;                 

   (Ⅲ)令,設函數(shù)處取得極值,記點,證明:線段與曲線存在異于、的公共點.

 

 

 

 

 

 

查看答案和解析>>

(2009•大連二模)(I)已知函數(shù)f(x)=x-
1
x
,x∈(
1
4
,
1
2
),P(x1,f(x1)),Q(x2,f(x2))是f(x)
圖象上的任意兩點,且x1<x2
①求直線PQ的斜率kPQ的取值范圍及f(x)圖象上任一點切線的斜率k的取值范圍;
②由①你得到的結論是:若函數(shù)f(x)在[a,b]上有導函數(shù)f′(x),且f(a)、f(b)存在,則在(a,b)內(nèi)至少存在一點ξ,使得f′(ξ)=
f(b)-f(a)
b-a
f(b)-f(a)
b-a
成立(用a,b,f(a),f(b)表示,只寫出結論,不必證明)
(II)設函數(shù)g(x)的導函數(shù)為g′(x),且g′(x)為單調(diào)遞減函數(shù),g(0)=0.試運用你在②中得到的結論證明:
當x∈(0,1)時,f(1)x<g(x).

查看答案和解析>>

設直線與橢圓相切。 (I)試將表示出來;  (Ⅱ)若經(jīng)過動點可以向橢圓引兩條互相垂直的切線,為坐標原點,求證:為定值。

查看答案和解析>>

(本小題滿分12分)

某中學對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解,訓練對提髙‘數(shù)學應用題得分率作用”的試驗,其中甲班為試驗班(加強語文閱讀理解訓練),乙班為對比班(常規(guī)教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數(shù)學應用題上的得分率基本一致,試驗結束后,統(tǒng)計幾次數(shù)學應用題測試的平均成績(均取整數(shù))如下表所示:

60分以下

61—70 分

71—80 分

81-90 分

91-100分

甲班(人數(shù))

3

6

11

18

12

乙班(人數(shù))

8

13

15

10

現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.
(I )試分別估計兩個班級的優(yōu)秀率;

(II)由以上統(tǒng)計數(shù)據(jù)填寫下面2 X 2列聯(lián)表,并問是否有"5匁的把握認為“加強‘語文閱讀理解’訓練對提商‘數(shù)學應用題’得分率”有幫助.

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

合計

甲班

乙班

合計

參考公式及數(shù)據(jù):,

0.50

0.40

0.25

0.15

0.10

0. 05

0.025

0.010

0.005

0.001

K0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.82

查看答案和解析>>

一、選擇題:每小題5分,共60分.

       BABDB   DCABD  BD

二、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卷相應題號的橫線上.

13.某校有教師200人,男學生1200人,女學生1000人,現(xiàn)用分層抽樣的方法從所有老師中抽取一個容量為n的樣本;已知從女學生中抽取的人數(shù)為80人,則n的值為:16

14.若△ABC三個內(nèi)角A、B、C的對邊分別是a、b、c,且acosB+bcosA=csinC,則角C的大小為:

15.若、滿足約束條件的最大值為:2

16.若,且,則實數(shù)x的取值范圍是:

三、解答題:本大題共6小題,共70分.把答案填在答題卷相應題號的答題區(qū)中.

17.(本小題滿分10分)

如圖,已知,且

(I)試用表示;

(Ⅱ)設向量的夾角為,求的值.

解:(I)設,則

      ;            …………3分

,

       所以         解得:                                                  

       即 .                                                                                  …………5分

(Ⅱ)由(I)知 ,又

所以 ) ()=,                                     

                            …………8分

.                                                      …………10分

18.(本小題滿分10分)

甲、乙等五名奧運志愿者被隨機地分配到四個不同的崗位服務,每個崗位至少有一名志愿者.

(Ⅰ)求甲、乙兩人同時被分配到崗位服務的概率;

(Ⅱ)求甲、乙兩人被分配到不同崗位服務的概率.

解:(Ⅰ)記甲、乙兩人同時被分到崗位服務為事件

那么,

即甲、乙兩人同時被分到崗位服務的概率是.                                       …………5分

(Ⅱ)設甲、乙兩人同時被分到同一崗位服務為事件,

那么,

故甲、乙兩人被分到不同崗位服務的概率是.         …………10分

19.(本小題滿分12分)

如圖,四面體ABCD中,OBD的中點,AB=AD=CA=CB=CD=BD=2.

(Ⅰ)求證:AO⊥平面BCD;

(Ⅱ)求異面直線ABCD所成角的大小.

 

解:(方法一)

(Ⅰ)連結OC.∵BO=DO,AB=AD, BC=CD,

∴AO⊥BD,CO⊥BD.                                        …………3分

在△AOC中,由已知得AC=2,AO=1,CO=

∴AO2+CO2=AC2,∴∠AOC=90°,即AO⊥OC.

 ∴AO平面BCD.            …………6分

(Ⅱ)分別取AC、BC的中點M、E,連結OM、ME、OE,則

                  MEABOEDC.     

(或其補角)等于異面直線ABCD所成的角.                    …………9分

在△OME中,                                   

是直角△AOC斜邊AC上的中線,∴

∴異面直線ABCD所成角的大小為                                                 …………12分

(方法二)

(Ⅰ)同方法一.                                                …………6分

(Ⅱ)由(Ⅰ)知:AO⊥OC,AO⊥BD,CO⊥BD.

O為原點,建立空間直角坐標系如圖,   …………7分

A(0,0,1),B(1,0,0),C(0,,0),D(-1,0,0) .        …………10分

所以 ,

∴異面直線ABCD所成角的大小為                                         …………12分

20.(本小題滿分12分)

數(shù)列滿足,且

   (I)求,并證明數(shù)列是等比數(shù)列;

   (II)求

解:(I),

           ;                       …………2分

  又,,                    …………4分

    且  

    所以數(shù)列是以-2為首項,3為公比的等比數(shù)列.                   …………6分

   (II)由(I)得,    .                  …………8分

   

                               …………10分

                                    …………12分

21.(本小題滿分13分)

已知函數(shù),在任意一點處的切線的斜率為.

(I)求函數(shù)的單調(diào)區(qū)間;

(II)若上的最小值為,求在R上的極大值.

21. 解:(I)因,所以;  …………2分

 , ,,

 ,   .                  …………4分

上是增函數(shù),

在(-1,2)上為減函數(shù).               …………8分

(II)由(I)知在(-3,-1)上是增函數(shù),在(-1,2)上為減函數(shù),

所以 上的最小值是,極大值為.       …………10分

,,,

上的最小值是,∴,.   …………12分

即所求函數(shù)在R上的極大值為                                 …………13分

22.(本小題滿分13分)

如圖,傾斜角為的直線經(jīng)過拋物線的焦點F,且與拋物線交于A、B兩點.

(I)求拋物線的焦點F的坐標及準線l的方程;

(II)若為銳角,作線段AB的垂直平分線mx軸于點P,證明為定值,并求此定值.

解:(I)設拋物線的標準方程為,則,從而

因此拋物線焦點F的坐標為(2,0),準線方程為.                      ……………4分

(II)作ACl,BDl,垂足分別為CD,

則由拋物線的定義知:|FA|=|AC|,|FB|=|BD|.

A、B的橫坐標分別為xA、xB,則

|FA|=|AC|=

解得;                                          ……………7分

|FB|=|BD|=

解得.                                                                           ……………9分

記直線mAB的交點為E,則

,

所以.                                                                  ……………12分

.                 ……………13分

 

 

 

 


同步練習冊答案