(本小題滿分12分)

某中學(xué)對高二甲、乙兩個同類班級進(jìn)行“加強(qiáng)‘語文閱讀理解,訓(xùn)練對提髙‘?dāng)?shù)學(xué)應(yīng)用題得分率作用”的試驗(yàn),其中甲班為試驗(yàn)班(加強(qiáng)語文閱讀理解訓(xùn)練),乙班為對比班(常規(guī)教學(xué),無額外訓(xùn)練),在試驗(yàn)前的測試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗(yàn)結(jié)束后,統(tǒng)計幾次數(shù)學(xué)應(yīng)用題測試的平均成績(均取整數(shù))如下表所示:

60分以下

61—70 分

71—80 分

81-90 分

91-100分

甲班(人數(shù))

3

6

11

18

12

乙班(人數(shù))

8

13

15

10

現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.
(I )試分別估計兩個班級的優(yōu)秀率;

(II)由以上統(tǒng)計數(shù)據(jù)填寫下面2 X 2列聯(lián)表,并問是否有"5匁的把握認(rèn)為“加強(qiáng)‘語文閱讀理解’訓(xùn)練對提商‘?dāng)?shù)學(xué)應(yīng)用題’得分率”有幫助.

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

合計

甲班

乙班

合計

參考公式及數(shù)據(jù):,

0.50

0.40

0.25

0.15

0.10

0. 05

0.025

0.010

0.005

0.001

K0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.82

解:⑴由題意,甲、乙兩班均有學(xué)生50人,------------------- 1分

         甲班優(yōu)秀人數(shù)為30人,優(yōu)秀率為,----------- 2分

         乙班優(yōu)秀人數(shù)為25人,優(yōu)秀率為,----------- 4分

         所以甲、乙兩班的優(yōu)秀率分別為60%和50%.------------------- 5分

       ⑵

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

合計

甲班

30

20

50

乙班

25

25

50

合計

55

45

100

                                                        ---------- 7分

注意到,---------------- 11分

         所以由參考數(shù)據(jù)知,沒有75%的把握認(rèn)為“加強(qiáng)‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率”有幫助. ------------------- 12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案