題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設數(shù)列滿足:,設,
若(2)中的滿足對任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點在軸上,點在軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在軸上移動時,求動點的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.(本小題滿分14分)設函數(shù)
(1)求函數(shù)的單調區(qū)間;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時, 的單調性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項公式;
(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;
(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。
選擇題
題號
1
2
3
4
5
6
7
8
9
10
答案
C
B
A
A
A
B
C
D
C
A
填空題
11. 12. 13.-18 14.(2,3) 15.①②⑤
16. 解(1)由題意得, ………2分 ; 從而, ………4分
又,所以 ………………………………………6分
(2)由(1)得………………………8分
因為,所以,所以當時,取得最小值為1…10分
且的單調遞減區(qū)間為 ………………………………12分
17. 令設的值域為M.
(Ⅰ)當的定義域為R,有.
故 …………………………6分
(Ⅱ)當的值域為R,有
故 或
∴ ………………………………………………12分
18. 建立如圖所示的直角坐標系,則E(30,0),F(xiàn)(0,20)。
∴線段的方程是………3分
在線段上取點,作PQ⊥BC于點Q,PR⊥CD于點R,
設矩形PQCR的面積為s,則s=|PQ|?|PR|=(100-)(80-).…………6分
又∵ ,∴,
∴!10分
∴當=
故當矩形廣場的兩邊在BC、CD上,一個頂點在線段EF上,
且這個頂點分EF成5:1時,廣場的面積最大! 12分
19.解: (1) 由題知: , 解得 , 故. ………2分
(2) ,
,
,
又滿足上式. 所以……………7分
(3) 若是與的等差中項, 則,
從而, 得.
因為是的減函數(shù), 所以
當, 即時, 隨的增大而減小, 此時最小值為;
當, 即時, 隨的增大而增大, 此時最小值為.
又, 所以,
即數(shù)列中最小, 且. …………12分
20.解:(1)三個函數(shù)的最小值依次為,,
由,得
∴
,
故方程的兩根是,.
故,. ,即
∴ .………………6分
(2)①依題意是方程的根,
故有,,
且△,得.
由……………9分
;得,,.
由(1)知,故,
∴ ,
∴ .………………………13分
21.(Ⅰ)設AB:x=my+2, A(x1,y1) ,B(x2,y2)
將x=my+2代入,消x整理,得:
(m2+2)y2+4my-4=0
而=
==
取“=”時,顯然m=0,此時AB:x=2……………………6分
(Ⅱ)(?)顯然是橢圓的右焦點,離心率
且
作 點A在橢圓上
……………10分
(?)同理 ,由
有 =2
解得:=,故
所以直線AB: y=(x-2)
即直線AB的方程為………14分
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com