(3)證明:△中.小題結(jié)論) (4)自己設(shè)計(jì)一道可直接應(yīng)用第小題結(jié)論的不等式證明題.并寫出證明過程. 查看更多

 

題目列表(包括答案和解析)

 (1)已知:均是正數(shù),且,求證:;

   (2)當(dāng)均是正數(shù),且,對(duì)真分?jǐn)?shù),給出類似上小題的結(jié)論,并予以證明;

   (3)證明:△中,(可直接應(yīng)用第(1)、(2)小題結(jié)論)

   (4)自己設(shè)計(jì)一道可直接應(yīng)用第(1)、(2)小題結(jié)論的不等式證明題,并寫出證明過程.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(1)已知:a,b,x均是正數(shù),且a>b,求證:

(2)當(dāng)a,b,x均是正數(shù),且a<b,對(duì)真分?jǐn)?shù),給出類似上小題的結(jié)論,并予以證明;

(3)證明:△ABC中,(可直接應(yīng)用第(1)、(2)小題結(jié)論)

(4)自己設(shè)計(jì)一道可直接應(yīng)用第(1)、(2)小題結(jié)論的不等式證明題,并寫出證明過程.

查看答案和解析>>

(1)已知:a、b、x均是正數(shù),且a>b,求證:1<

(2)當(dāng)a,b,x均是正數(shù),且a<b,對(duì)真分?jǐn)?shù),給出類似上小題的結(jié)論,并予以證明;

(3)證明:△ABC中,(可直接應(yīng)用第(1)、(2)小題結(jié)論)

(4)自己設(shè)計(jì)一道可直接應(yīng)用第(1)、(2)小題結(jié)論的不等式證明題,并寫出證明過程.

查看答案和解析>>

(1)已知:a,b,x均是正數(shù),且a>b,求證:
(2)當(dāng)a,b,x均是正數(shù),且a<b,對(duì)真分?jǐn)?shù),給出類似上小題的結(jié)論,并予以證明;
(3)證明:△ABC中,(可直接應(yīng)用第(1)、(2)小題結(jié)論)
(4)自己設(shè)計(jì)一道可直接應(yīng)用第(1)、(2)小題結(jié)論的不等式證明題.

查看答案和解析>>

(1)已知:a,b,x均是正數(shù),且a>b,求證:;
(2)當(dāng)a,b,x均是正數(shù),且a<b,對(duì)真分?jǐn)?shù),給出類似上小題的結(jié)論,并予以證明;
(3)證明:△ABC中,(可直接應(yīng)用第(1)、(2)小題結(jié)論)
(4)自己設(shè)計(jì)一道可直接應(yīng)用第(1)、(2)小題結(jié)論的不等式證明題.

查看答案和解析>>

一、1.  2.3  3.  4.18   5.   6.55  7.  8.0   9.7    10.0或-2

    11.   12.

二、13.C     14.B     15.D     16.A

三、17.解:(1);

         (2);

         (3)表面積S=48.

18.解:(1) ,

        

(2)

  由,得當(dāng)時(shí),取得最小值-2

19.解:(1)

       

(2)

,①

,②

②-①,整理,得

20.解:(1),設(shè)

        則

任取,,

當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),單調(diào)遞增.

            由

            的值域?yàn)?sub>.

(2)設(shè),

所以單調(diào)遞減.

         (3)由的值域?yàn)椋?sub>

           所以滿足題設(shè)僅需:

           解得,.

  21.解:(1)

           又

         (2)應(yīng)用第(1)小題結(jié)論,得取倒數(shù),得

         (3)由正弦定理,原題⇔△ABC中,求證:

         證明:由(2)的結(jié)論得,均小于1,

               ,

              

          (4)如得出:四邊形ABCD中,求證:且證明正確給3分;

             如得出:凸n邊形A1A2A3┅An中,邊長(zhǎng)依次為求證:

             且證明正確給4分.

             如能應(yīng)用到其它內(nèi)容有創(chuàng)意則給高分.

             如得出:為各項(xiàng)為正數(shù)的等差數(shù)列,,求證:

             .

 

 

 


同步練習(xí)冊(cè)答案