(2)若.設(shè)為數(shù)列的前項(xiàng)和.若≤對(duì)一切恒成立.求實(shí)數(shù)的最小值. 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)一切,點(diǎn)都在函數(shù)圖像上,設(shè)為數(shù)列的前項(xiàng)積,是否存在實(shí)數(shù),使得對(duì)一切都成立?若存在,求出的范圍,若不存在,請(qǐng)說明理由

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為,對(duì)一切,點(diǎn)在函數(shù)的圖象上.
(1)求a1,a2,a3值,并求的表達(dá)式;
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(),(),(,),(,,);(),(),(,),(,,,);(),…,分別計(jì)算各個(gè)括號(hào)內(nèi)所有項(xiàng)之和,并設(shè)由這些和按原來括號(hào)的前后順序構(gòu)成的數(shù)列為,求的值;w*w^w.k&s#5@u.c~o*m
(3)設(shè)為數(shù)列的前項(xiàng)積,是否存在實(shí)數(shù),使得不等式對(duì)一切都成立?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為,對(duì)一切,點(diǎn)都在函數(shù)的圖象上
(1)求歸納數(shù)列的通項(xiàng)公式(不必證明);
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(),,,;,;,…..,
分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來括號(hào)的前后順序構(gòu)成的數(shù)列為,
的值;
(3)設(shè)為數(shù)列的前項(xiàng)積,若不等式對(duì)一切都成立,其中,求的取值范圍

查看答案和解析>>

數(shù)列的前項(xiàng)和為,且和1的等差中項(xiàng),等差數(shù)列滿足
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè),數(shù)列的前n項(xiàng)和為,若對(duì)一切恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為,對(duì)一切,點(diǎn)都在函數(shù)的圖象上
(1)求歸納數(shù)列的通項(xiàng)公式(不必證明);
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(),,;,,,;,…..,
分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來括號(hào)的前后順序構(gòu)成的數(shù)列為,
的值;
(3)設(shè)為數(shù)列的前項(xiàng)積,若不等式對(duì)一切都成立,其中,求的取值范圍

查看答案和解析>>

一、選擇題:

1C  2.D  3.D  4.C  5. B  6.C   7. C   8.C  9.  A 

1,3,5

二、填空:

13..y=54.8(1+x%)16   14.(0,)  15.   16.

三、解答題:本大題共6小題,共74分,解答時(shí)應(yīng)寫出必要的文字說明、證明過程或演算步驟。

17.解(1)

(2)

    <mark id="m10xv"><pre id="m10xv"></pre></mark>
  • 1,3,5

    18.解:(1)當(dāng)時(shí).…………2分

    ,連.

    ⊥面,知⊥面.…………3分

    當(dāng)中點(diǎn)時(shí),中點(diǎn).

    ∵△為正三角形,

    ,∴…………5分

    …………6分

       (2)過,連結(jié),則,

    ∴∠為二面角P―AC―B的平面角,,

    …………8分

        …………10分

    ……12分

    19.解:(1)fx)=-a2x2+c+,……………(1分)

    a,∴∈(0,1,………………………………………(2分)

    x∈(0,1時(shí),[fx)]max=c+,……………………………(3分)

    fx)≤1,則[fx)]max=c+≤1,即c,……………(5分)

    ∴對(duì)任意x∈[0,1],總有fx)≤1成立時(shí),可得c.……(6分)

    (2)∵a,∴>0………………………(7分)

    又拋物線開口向下,fx)=0的兩根在[0,內(nèi),…………(8分)

    …………(11分)

     

    所求實(shí)數(shù)c的取值范圍為。

    20.解:(1)當(dāng)時(shí),,不成等差數(shù)列!1分)

    當(dāng)時(shí),  ,

    ,  ∴,∴ …………(4分)

    …………………….5分

    (2)………………(6分)

    ……………………(7分)

    ………(8分)

    ,∴……………(10分)

    ,

     ∴的最小值為……………….12分

    21.解:(1)

    ……………………2分

    當(dāng)是增函數(shù)

    當(dāng)是減函數(shù)……………………4分

    ……6分

    (2)因?yàn)?sub>,所以,

    ……………………8分

    所以的圖象在上有公共點(diǎn),等價(jià)于…………10分

    解得…………………12分

    22解:(1)由題意:∵|PA|=|PB|且|PB|+|PF|=r=8

    ∴|PA|+|PF|=8>|AF|

    ∴P點(diǎn)軌跡為以A、F為焦點(diǎn)的橢圓…………………………3分

    設(shè)方程為

    ………………………5分

    (2)假設(shè)存在滿足題意的直線l,其斜率存在,設(shè)為k,設(shè)

     

     

     

     


    同步練習(xí)冊(cè)答案