16. 棱長為1的正方體在平面α內(nèi)的射影構(gòu)成的圖形面積的取值范圍是 查看更多

 

題目列表(包括答案和解析)

正方體,的棱長為1,的中點,則下列五個命題:

①點到平面,的距離為

②直與線平面,所成的角等于

③空間四邊形,在正方體六個面內(nèi)形成六個射影,其面積的最小值是

所成的角

⑤二面角的大小為 

其中真命題是                      。(寫出所有真命題的序號)

查看答案和解析>>

正方體,的棱長為1,的中點,則下列五個命題:

①點到平面,的距離為

②直與線平面,所成的角等于

③空間四邊形,在正方體六個面內(nèi)形成六個射影,其面積的最小值是

所成的角

⑤二面角的大小為 

其中真命題是                      。(寫出所有真命題的序號)

查看答案和解析>>

正方體ABCD-A1B1C1D1的棱長為1,E為A1B1的中點,則下列五個命題:
①點E到平面ABC1D1的距離為
1
2
;
②直線BC與平面ABC1D1所成的角為45°;
③空間四邊形ABCD1在正方體六個面內(nèi)形成的六個射影平面圖形,其中面積最小值是
1
2
;
④AE與DC1所成的角的余弦值為
3
10
10

⑤二面角A-BD1-C的大小為
6

其中真命題是______.(寫出所有真命題的序號)

查看答案和解析>>

正方體,的棱長為1,的中點,則下列五個命題:
①點到平面,的距離為
②直線與平面,所成的角等于
③空間四邊形,在正方體六個面內(nèi)形成六個射影,其面積的最小值是
所成的角
⑤二面角的大小為 
其中真命題是                     。(寫出所有真命題的序號)

查看答案和解析>>

正方體ABCD-A1B1C1D1的棱長為1,EA1B1的中點,則下列五個命題:

①點E到平面ABC1D1的距離為

②直線BC與平面ABC1D1所成的角等于45°;

③空間四邊形ABCD1在正方體六個面內(nèi)形成六個射影,其面積的最小值是

AEDC1所成的角為;

⑤二面角A-BD1C的大小為

其中真命題是________.(寫出所有真命題的序號)

查看答案和解析>>

一、選擇題:

1C  2.D  3.D  4.C  5. B  6.C   7. C   8.C  9.  A 

1,3,5

二、填空:

13..y=54.8(1+x%)16   14.(0,)  15.   16.

三、解答題:本大題共6小題,共74分,解答時應(yīng)寫出必要的文字說明、證明過程或演算步驟。

17.解(1)

(2)

    1,3,5

    18.解:(1)當(dāng)時.…………2分

    ,連.

    ⊥面,知⊥面.…………3分

    當(dāng)中點時,中點.

    ∵△為正三角形,

    ,∴…………5分

    …………6分

       (2)過,連結(jié),則,

    ∴∠為二面角P―AC―B的平面角,,

    …………8分

        …………10分

    ……12分

    19.解:(1)fx)=-a2x2+c+,……………(1分)

    a,∴∈(0,1,………………………………………(2分)

    x∈(0,1時,[fx)]max=c+,……………………………(3分)

    fx)≤1,則[fx)]max=c+≤1,即c,……………(5分)

    ∴對任意x∈[0,1],總有fx)≤1成立時,可得c.……(6分)

    (2)∵a,∴>0………………………(7分)

    又拋物線開口向下,fx)=0的兩根在[0,內(nèi),…………(8分)

    …………(11分)

     

    所求實數(shù)c的取值范圍為。

    20.解:(1)當(dāng)時,,不成等差數(shù)列!1分)

    當(dāng)時,  ,

    ,  ∴,∴ …………(4分)

    …………………….5分

    (2)………………(6分)

    ……………………(7分)

    ………(8分)

    ,∴……………(10分)

     ∴的最小值為……………….12分

    21.解:(1)

    ……………………2分

    當(dāng)是增函數(shù)

    當(dāng)是減函數(shù)……………………4分

    ……6分

    (2)因為,所以,

    ……………………8分

    所以的圖象在上有公共點,等價于…………10分

    解得…………………12分

    22解:(1)由題意:∵|PA|=|PB|且|PB|+|PF|=r=8

    ∴|PA|+|PF|=8>|AF|

    ∴P點軌跡為以A、F為焦點的橢圓…………………………3分

    設(shè)方程為

    ………………………5分

    (2)假設(shè)存在滿足題意的直線l,其斜率存在,設(shè)為k,設(shè)

     

     

     

     


    同步練習(xí)冊答案