題目列表(包括答案和解析)
.符號表示不超過的最大整數,
如,定義函數,設函數在區(qū)間上零點的個數記為圖象交點的個數記為,則的值是 。
把函數的圖象按向量平移得到函數的圖象.
(1)求函數的解析式; (2)若,證明:.
【解析】本試題主要考查了函數 平抑變換和運用函數思想證明不等式。第一問中,利用設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 ,便可以得到結論。第二問中,令,然后求導,利用最小值大于零得到。
(1)解:設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分
(2) 證明:令,……6分
則……8分
,∴,∴在上單調遞增.……10分
故,即
設是定義在R上的偶函數,且當時,。若對任意的x,不等式恒成立,則實數a的最大值是( )。
A. | B. | C. | D.2 |
A. | B. | C. | D.2 |
在計算機的算法語言中有一種函數叫做取整函數(也稱高斯函數),它表示的整數部分,即[]是不超過的最大整數.例如:。設函數,則函數的值域為 ( )
A. B. C. D.
一、選擇題 CAAD ABDAB CB
二、填空題 . . . .
三、解答題
.
的周期為,最大值為.
由得,
又,,
∴ 或 或
∴ 或 或
.顯然事件即表示乙以獲勝,
∴
的所有取值為.
∴的分布列為:
3
4
5
數學期望.
.當在中點時,平面.
延長、交于,則,
連結并延長交延長線于,
則,.
在中,為中位線,,
又,
∴.
∵中,
∴,即
又,,
∴平面 ∴.
∴為平面與平面所成二面
角的平面角。
又,
∴所求二面角的大小為.
.由題意知的方程為,設,.
聯立 得.
∴.
由拋物線定義,
∴.拋物線方程,
由題意知的方程為.設,
則,,
∴
.
由知,,,.
則
∴當時,的最小值為.
.∵ ,
∴.
∴
∴
即
∴s
時,也成立
∴
,
∴
∴
∵ ,
又
∴
.,
∵在上單調,
∴或在上恒成立.
即或恒成立.
或在上恒成立.
又,
∴或.
由得:
,
化簡得
當時,,,
∴
又,
∴
當時,,
綜上,實數的取值范圍是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com