動點到兩定點,連線的斜率的乘積為,則動點的軌跡可以是 *** ①直線.②橢圓.③雙曲線.④拋物線.⑤圓 19.空間直角坐標系中.O為坐標原點. A.B為兩個定點.若動點C滿足 查看更多

 

題目列表(包括答案和解析)

動點到兩定點,連線的斜率的乘積為),則動點P在以下哪些曲線上(    )(寫出所有可能的序號)

① 直線   ② 橢圓   ③ 雙曲線  ④ 拋物線      ⑤ 圓

A.①⑤             B.③④⑤           C.①②③⑤         D.①②③④⑤

 

查看答案和解析>>

動點到兩定點,連線的斜率的乘積為),則動點P在以下哪些曲線上(    )(寫出所有可能的序號)
① 直線   ② 橢圓   ③ 雙曲線  ④ 拋物線      ⑤ 圓

A.①⑤ B.③④⑤ C.①②③⑤ D.①②③④⑤

查看答案和解析>>

動點到兩定點,連線的斜率的乘積為),則動點P在以下哪些曲線上(    )(寫出所有可能的序號)
① 直線   ② 橢圓   ③ 雙曲線  ④ 拋物線      ⑤ 圓
A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤

查看答案和解析>>

.動點到兩定點,連線的斜率的乘積為),則動點P在以下哪些曲線上(    )(寫出所有可能的序號)

① 直線    ② 橢圓    ③ 雙曲線   ④ 拋物線       ⑤ 圓

A.①⑤     B.③④⑤     C.①②③⑤    D.①②③④⑤

 

查看答案和解析>>

動點P到兩定點A(a,0),B(-a,0)連線的斜率的乘積為k,試求點P的軌跡方程,并討論軌跡是什么曲線?

查看答案和解析>>

1―5、  CDDCA   6―10、DABAB    11、    12、1,  9

13:因為方程x 2 + mx + 1=0有兩個不相等的實根,

所以Δ1=m 2 ? 4>0,  ∴m>2或m < ? 2               

又因為不等式4x 2 +4(m ? 2)x + 1>0的解集為R,

所以Δ2=16(m ? 2) 2? 16<0,   ∴1< m <3            

因為pq為真,pq為假,所以pq為一真一假, 

(1)當p為真q為假時,

(2)當p為假q為真時,    

綜上所述得:m的取值范圍是

14、解:  直線方程為y=-x+4,聯(lián)立方程,消去y得,.

設A(),B(),得

所以:,

由已知可得+=0,從而16-8p=0,得p=2.

所以拋物線方程為y2=4x,焦點坐標為F(1,0)

15、解(Ⅰ) AC與PB所成角的余弦值為.

 (Ⅱ)N點到AB、AP的距離分別為1,.

16解:   (1); (2)略

17、6        18、①②③⑤         19、B     20、B

21、解:(1)略  (2)

22、解:(1)設雙曲線C的漸近線方程為y=kx,則kx-y=0

∵該直線與圓 相切,∴雙曲線C的兩條漸近線方程為y=±x.

故設雙曲線C的方程為.又雙曲線C的一個焦點為,

,∴雙曲線C的方程為:.

(2)由.令

∵直線與雙曲線左支交于兩點,等價于方程f(x)=0在上有兩個

不等負實根.

因此,解得..                       

(3). ∵ AB中點為,

∴直線l的方程為:. 令x=0,得

,∴,∴.     

 

 

 

 

 

 


同步練習冊答案