查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于兩點,又過、作軌跡的切線、,當,求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記

(I)求數(shù)列的通項公式;

(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

                     

一、選擇題:本大題主要考查基本知識和基本運算.共12小題,每小題5分,滿分60分.

    題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

B

A

B

C

D

C

B

D

C

C

二、填空題:本大題主要考查基本知識和基本運算.本大題共4小題,每小題4分,滿分16

分.13.      14.    15.     16.

三、解答題:本大題共6小題,滿分74分.解答須寫出文字說明、證明過程和演算步驟.

17.(本小題滿分12分)          

解:(1)∵

                                        …… 2分

                                   …… 4分       

             .                                  …… 6分

.                                             …… 8分

(2) 當時, 取得最大值, 其值為2 .               ……10分

此時,即Z.                 ……12分

18. (本小題滿分12分)

解:(1) 由頻率分布條形圖知,抽取的學生總數(shù)為人.         ……4分   

∵各班被抽取的學生人數(shù)成等差數(shù)列,設(shè)其公差為,

=100,解得.

∴各班被抽取的學生人數(shù)分別是22人,24人,26人,28人.     ……8分

(2) 在抽取的學生中,任取一名學生, 則分數(shù)不小于90分的概率為0.35+0.25+0.1+0.05=0.75.……12分

19.(本小題滿分14分)解:(1)∵ ⊥平面,平面,     

.                                                …… 2分   

,,

⊥平面,                                        …… 4分

平面,∴ .                                    …… 6分

(2)法1: 取線段的中點,的中點,連結(jié),

是△中位線.

,,               ……8分

,,

.

∴ 四邊形是平行四邊形,            ……10分

.

平面平面,

∥平面.                                        

∴ 線段的中點是符合題意要求的點.                      ……12分

 法2: 取線段的中點,的中點,連結(jié),

是△的中位線.

,                 

平面, 平面,

平面.                         …… 8分

,,

.∴ 四邊形是平行四邊形,             

平面,平面,

∥平面.                                        ……10分

,∴平面平面.∵平面,

∥平面.                                         

∴ 線段的中點是符合題意要求的點.                     ……12分

20、(本小題滿分12分)

解:解:(1)

    ①式 …………1分

  …………3分

由條件   ②式…………5分

由①②式解得

(2),

  …………8分

經(jīng)檢驗知函數(shù)

的取值范圍。 …………12分

21. (本小題滿分12分)

(1) 解:當時,.                                        ……1分

   當時,

.                                        ……3分

不適合上式,

                                       ……4分

(2)證明: ∵.

時,                                         ……6分

時,,          ①

.  、

①-②得:

                

,                             ……8分

此式當時也適合.

N.                                            ∵,∴.                                 ……10分

時,,

.                                     ∵,∴.           故,即.

綜上,.                              ……12分

22. (本小題滿分14分)

解:(1)依題意知,                                      …… 2分           

    ∵,.                            …… 4分

∴所求橢圓的方程為.                               …… 6分

(2)∵ 點關(guān)于直線的對稱點為,

                                       …… 8分

解得:,.                            …… 10分

 

.                                              …… 12分

∵ 點在橢圓:上,∴, 則.

的取值范圍為.                                ……14分

 

 

 

 

 


同步練習冊答案