(2012•南湖區(qū)二模)在特殊四邊形的復習課上,王老師出了這樣一道題:
如圖1,在?ABCD中,E、F、G、H分別為AB,BC,CD,DA邊上的動點,連接EG,HF相交于點O,且∠HOE=∠ADC,若AB=a,AD=b,試探究:EG與FH的數量關系.
經過小組討論后,小聰建議分以下三步進行,請你解答:
(1)特殊情況,探索結論
當?ABCD是邊長為a的正方形時(如圖2),請寫出EG與FH的數量關系(不必證明);
(2)嘗試變題,再探思路
當?ABCD是邊長為a的菱形時(如圖3),EG與FH又有怎樣的數量關系呢?
小聰想:要求EG與FH的數量關系,就要構成全等三角形或相似三角形,于是,分別過點G、H作GM⊥AB于點M,HN⊥BC于點N,在△HNF和△GME中,有∠GME=∠HNF=Rt∠,由菱形面積與性質可得GM=HN,能否從已知條件得到∠MGE=∠NHF呢?請你根據小聰的思路完成解答過程;
(3)特例啟發(fā),解答題目
猜想:原題中EG與FH的數量關系是
,并說明理由.