(2012•南湖區(qū)二模)在特殊四邊形的復(fù)習(xí)課上,王老師出了這樣一道題:
如圖1,在?ABCD中,E、F、G、H分別為AB,BC,CD,DA邊上的動(dòng)點(diǎn),連接EG,HF相交于點(diǎn)O,且∠HOE=∠ADC,若AB=a,AD=b,試探究:EG與FH的數(shù)量關(guān)系.
經(jīng)過(guò)小組討論后,小聰建議分以下三步進(jìn)行,請(qǐng)你解答:
(1)特殊情況,探索結(jié)論
當(dāng)?ABCD是邊長(zhǎng)為a的正方形時(shí)(如圖2),請(qǐng)寫(xiě)出EG與FH的數(shù)量關(guān)系(不必證明);
(2)嘗試變題,再探思路
當(dāng)?ABCD是邊長(zhǎng)為a的菱形時(shí)(如圖3),EG與FH又有怎樣的數(shù)量關(guān)系呢?
小聰想:要求EG與FH的數(shù)量關(guān)系,就要構(gòu)成全等三角形或相似三角形,于是,分別過(guò)點(diǎn)G、H作GM⊥AB于點(diǎn)M,HN⊥BC于點(diǎn)N,在△HNF和△GME中,有∠GME=∠HNF=Rt∠,由菱形面積與性質(zhì)可得GM=HN,能否從已知條件得到∠MGE=∠NHF呢?請(qǐng)你根據(jù)小聰?shù)乃悸吠瓿山獯疬^(guò)程;
(3)特例啟發(fā),解答題目
猜想:原題中EG與FH的數(shù)量關(guān)系是
EG
FH
=
b
a
EG
FH
=
b
a
,并說(shuō)明理由.
分析:(1)過(guò)G作GM⊥AB于M,過(guò)H作HN⊥BC于N,求出GM=HN,求出∠GME=∠HNF=90°,∠GEM=∠HFN,證出△GME≌△HNF即可;
(2)過(guò)G作GM⊥AB于M,過(guò)H作HN⊥BC于N,根據(jù)菱形面積公式求出GM=HN,求出∠GME=∠HNF=90°,∠GEM=∠HFN,證出△GME≌△HNF即可;
(3)過(guò)G作GM⊥AB于M,過(guò)H作HN⊥BC于N,根據(jù)平行四邊形面積公式求出
GM
HN
=
BC
AB
=
b
a
,求出∠GME=∠HNF=90°,∠GEM=∠HFN,證出△GME∽△HNF即可.
解答:(1)解:EG=FH,
理由是:過(guò)G作GM⊥AB于M,過(guò)H作HN⊥BC于N,
∵四邊形ABCD是正方形,
∴DC=AB,AD∥BC,DC∥AB,AD=BC,∠D=∠A=∠B=∠C=90°,
∴GM∥AD∥BC,HN∥DC∥AB,
∴四邊形ADGM、四邊形GMBC、四邊形AHNB,四邊形DCNH是平行四邊形,
∴DC=HN=AB,AD=GM=BC,
∴HN=GM,
∵∠ADC=∠HOE=90°,
∴∠DHO+∠DGE=360°-90°-90°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
∵HN⊥BC,GM⊥AB,
∴∠GME=∠HNF=90°,
在△GME和△HNF中
∠GEM=∠HFN
∠GME=∠HNF
GM=HN

∴△GME≌△HNF(AAS),
∴EG=FH;

(2)EG=FH,
理由是:過(guò)G作GM⊥AB于M,過(guò)H作HN⊥BC于N,
∵四邊形ABCD是菱形,
∴DC=AB=BC,AD∥BC,DC∥AB,
∵菱形ABCD的面積S=AB×GM=BC×HN,
∴GM=HN,
∵GM⊥AB,HN⊥BC,
∴∠GME=∠HNF=90°,
∵∠ADC=∠HOE,
∴∠ADC+∠HOG=∠EOH+∠HOG=180°,
∴∠DHO+∠DGE=360°-180°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
在△GME和△HNF中
∠GEM=∠HFN
∠GME=∠HNF
GM=HN

∴△GME≌△HNF(AAS),
∴EG=FH.
(3)
EG
FH
=
b
a
,
理由是:過(guò)G作GM⊥AB于M,過(guò)H作HN⊥BC于N,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,DC∥AB,
∵平行四邊形ABCD的面積S=AB×GM=BC×HN,
∵AB=a,AD=b,
GM
HN
=
b
a
,
∵GM⊥AB,HN⊥BC,
∴∠GME=∠HNF=90°,
∵∠ADC=∠HOE,
∴∠ADC+∠HOG=∠EOH+∠HOG=180°,
∴∠DHO+∠DGE=360°-180°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
∴△GME∽△HNF,
EG
FH
=
GM
HN
=
b
a
,
故答案為:
EG
FH
=
b
a
點(diǎn)評(píng):本題考查了正方形性質(zhì),平行四邊形性質(zhì),菱形性質(zhì),面積公式,全等三角形的性質(zhì)和判定,相似三角形的性質(zhì)和判定的應(yīng)用,題目具有一定的代表性,證明過(guò)程類(lèi)似.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南湖區(qū)二模)2012年嘉興市生態(tài)文化旅游節(jié)暨南湖桃花節(jié)期間,來(lái)觀賞桃花的游客約為2.5萬(wàn),2.5萬(wàn)用科學(xué)記數(shù)法表示正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南湖區(qū)二模)下列運(yùn)算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南湖區(qū)二模)用如圖兩個(gè)完全相同的直角三角板,下列圖形中不能拼成的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南湖區(qū)二模)已知二次函數(shù):y=3(x-1)2+2,下列結(jié)論正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南湖區(qū)二模)如圖是某選手10次射擊成績(jī)條形統(tǒng)計(jì)圖,根據(jù)圖中信息,下列說(shuō)法錯(cuò)誤的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案