(2)直線與該雙曲線交于不同的兩點(diǎn).,且.兩點(diǎn)都在以A為圓心的同一圓上,求m的取值范圍. 查看更多

 

題目列表(包括答案和解析)

雙曲線與橢圓有相同的焦點(diǎn),且該雙曲線

的漸近線方程為

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2) 過該雙曲線的右焦點(diǎn)作斜率不為零的直線與此雙曲線的左,右兩支分別交于點(diǎn)、

設(shè),當(dāng)軸上的點(diǎn)滿足時(shí),求點(diǎn)的坐標(biāo).

 

查看答案和解析>>

雙曲線與橢圓有相同的焦點(diǎn),且該雙曲線
的漸近線方程為
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2) 過該雙曲線的右焦點(diǎn)作斜率不為零的直線與此雙曲線的左,右兩支分別交于點(diǎn),
設(shè),當(dāng)軸上的點(diǎn)滿足時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

雙曲線與橢圓有相同的焦點(diǎn),且該雙曲線
的漸近線方程為
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2) 過該雙曲線的右焦點(diǎn)作斜率不為零的直線與此雙曲線的左,右兩支分別交于點(diǎn),
設(shè),當(dāng)軸上的點(diǎn)滿足時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右頂點(diǎn)為A(2,0),右焦點(diǎn)為F、O為坐標(biāo)原點(diǎn),點(diǎn)F,A到漸近線的距離之比為
5
2
,過點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數(shù)k,使得向量
OP
+
OQ
AB
垂直?如果存在,求k的值;如果不存在,請說明理由.

查看答案和解析>>

已知雙曲線數(shù)學(xué)公式的右頂點(diǎn)為A(2,0),右焦點(diǎn)為F、O為坐標(biāo)原點(diǎn),點(diǎn)F,A到漸近線的距離之比為數(shù)學(xué)公式,過點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數(shù)k,使得向量數(shù)學(xué)公式垂直?如果存在,求k的值;如果不存在,請說明理由.

查看答案和解析>>

1.C  2.D 3.A  4.A 5.C 6.A 7.D 8.A 9.C 10.D 11.D12.B

13.2  14. 15.16.①③④

17.

18.解:

.

⑵在上單調(diào)遞增,在上單調(diào)遞減.

所以,當(dāng)時(shí),;當(dāng)時(shí),.

的值域?yàn)?sub>.

19.解:⑴直線①,

過原點(diǎn)垂直于的直線方程為

解①②得,

∵橢圓中心O(0,0)關(guān)于直線的對稱點(diǎn)在橢圓C的右準(zhǔn)線上,

, …………………(分)

∵直線過橢圓焦點(diǎn),∴該焦點(diǎn)坐標(biāo)為(2,0),

,

故橢圓C的方程為  ③…………………12分)

20.點(diǎn)評:本小題考查二次函數(shù)、等差數(shù)列、數(shù)列求和、不等式等基礎(chǔ)知識和基本的運(yùn)算技能,考查分析問題的能力和推理能力。

解:(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得

a=3 ,  b=-2, 所以  f(x)=3x2-2x.

又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.

當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-

=6n-5.

當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 (

(Ⅱ)由(Ⅰ)

得知,

故Tn

(1-

因此,要使(1-)<)成立的m,必須且僅須滿足,即m≥10,所以滿足要求的最小正整數(shù)m為10.

21.(1)   

        

   

 (2)由

    令得,增區(qū)間為,

減區(qū)間為

   

2

 

+

0

0

+

 

    由表可知:當(dāng)時(shí),

   

        解得:

    的取值范圍為

22.(1)

   (2)

 

 


同步練習(xí)冊答案