精英家教網 > 高中數學 > 題目詳情

已知雙曲線數學公式的右頂點為A(2,0),右焦點為F、O為坐標原點,點F,A到漸近線的距離之比為數學公式,過點B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數k,使得向量數學公式垂直?如果存在,求k的值;如果不存在,請說明理由.

解:(I)由題意,a=2
根據三角形相似,可得點F,A到漸近線的距離之比為=,
∴c=,∴b==1
∴雙曲線的方程為
設直線l的方程為y=kx+2,代入雙曲線方程,可得(4k2-1)x2+16kx+20=0
∵過點B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點P,Q
∴4k2-1≠0且△=256k2-80(4k2-1)>0,即
解得-<k<且k≠
(II)設P(x1,y1),Q(x2,y2),則x1+x2=,
=(x1+x2,y1+y2),=(-2,2),垂直
∴-2(x1+x2)+2(y1+y2)=0
∴(x1+x2)(k-1)+4=0
+4=0
∴k=
∴存在常數k=,使得向量垂直.
分析:(I)由題意,a=2根據三角形相似,可得點F,A到漸近線的距離之比為=,從而可得雙曲線的方程;設出直線方程代入雙曲線方程,利用根的判別式,即可求k的取值范圍;
(II)用坐標表示向量,利用向量的數量積為0,建立方程,即可得到結論.
點評:本題考查雙曲線的標準方程,考查直線與雙曲線的位置關系,考查向量知識的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知雙曲線的右頂點為E,雙曲線的左準線與該雙曲線的兩漸近線的交點分別為A、B兩點,若∠AEB=60°,則該雙曲線的離心率e是( )

         A.            B.2         C.或2         D.不存在

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線的右頂點為E,雙曲線的左準線與該雙曲線的兩漸近線的交點分別為A、B兩點,若∠AEB=60°,則該雙曲線的離心率e是( )

       A.          B.2        C.或2         D.不存在

查看答案和解析>>

科目:高中數學 來源:2012-2013學年河北省高三3月月考數學試卷(解析版) 題型:解答題

已知雙曲線的右頂點為A,右焦點為F,右準線與軸交于點B,且與一條漸近線交于點C,點O為坐標原點,,,過點F的直線與雙曲線右支交于點

(Ⅰ)求此雙曲線的方程;

(Ⅱ)求面積的最小值.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖北省高三2月調研考試數學理卷 題型:解答題

(本小題滿分13分)

已知雙曲線的右頂點為A,右焦點為F,右準線與軸交于點B,且與一條漸近線交于點C,點O為坐標原點,又,過點F的直線與雙曲線右交于點M、N,點P為點M關于軸的對稱點。

(1)求雙曲線的方程;

(2)證明:B、P、N三點共線;

(3)求面積的最小值。

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年北京市高三起點考試理科數學卷 題型:選擇題

已知雙曲線的右頂點為E,過雙曲線的左焦點且垂直于軸的直線與該雙曲線相交A、B兩點,若,則該雙曲線的離心率是(    )

    A.        B.2              C.     D.不存在

 

查看答案和解析>>

同步練習冊答案