題目列表(包括答案和解析)
已知復數(shù)均為實數(shù),為虛數(shù)單位,且對于任意復數(shù)。
(1)試求的值,并分別寫出和用、表示的關(guān)系式;
(2)將(、)作為點的坐標,(、)作為點的坐標,上述關(guān)系可以看作是坐標平面上點的一個變換:它將平面上的點變到這一平面上的點,
當點在直線上移動時,試求點經(jīng)該變換后得到的點的軌跡方程;
(3)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由。
已知復數(shù)均為實數(shù),為虛數(shù)單位,且對于任意復數(shù)。
(Ⅰ)試求的值,并分別寫出和用、表示的關(guān)系式;
(Ⅱ)將(、)作為點的坐標,(、)作為點的坐標,上述關(guān)系可以看作是坐標平面上點的一個變換:它將平面上的點變到這一平面上的點,當點在直線上移動時,試求點經(jīng)該變換后得到的點的軌跡方程;
(Ⅲ)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由。
. |
z0 |
. |
z |
. |
z0 |
. |
z |
3 |
z |
2+i |
2 |
1、B
2、D
3、A
4、[解法一]設
而
又∵在復平面上對應的點在第二、四象限的角平分線上,
∴,得.
∴. 即;,
當時,有,即,得.
當時,同理可得.
[解法二],∴,
得
或 得.
當時,有,即,得.
當時,同理可得.
5、解:由
由得
故
當且僅當時,即時,上式取等號.
所以當時,函數(shù)取最大值
6、D
7、解:因為
因為
于是
由此得OP⊥OQ,|OP|=|OQ| .
由此知△OPQ有兩邊相等且其夾角為直角,故△OPQ為等腰直角三角形。
8、B
9、解:設Z1,Z3對應的復數(shù)分別為
依題設得
10、A
11、(1)
(2)
12、,或
13、解:(Ⅰ)由
,
得. ……4分
因為 ,,
所以 . ……6分
(Ⅱ)因為,
所以 ,而,所以,
,同理, .
由(Ⅰ)知 ,
即 ,
所以 的實部為, ……8分
而的輻角為時,復數(shù)的實部為
,
所以 ……12分
14、C
15、[解](1)由題設,,
于是由, …(3分)
因此由,
得關(guān)系式 …(5分)
[解](2)設點在直線上,則其經(jīng)變換后的點滿足
, …(7分)
消去,得,
故點的軌跡方程為 …(10分)
[解](3)假設存在這樣的直線,∵平行坐標軸的直線顯然不滿足條件,
∴所求直線可設為, …(12分)
[解法一]∵該直線上的任一點,其經(jīng)變換后得到的點
仍在該直線上,
∴,
即,
當時,方程組無解,
故這樣的直線不存在。 …(16分)
當時,由
得,
解得或,
故這樣的直線存在,其方程為或, …(18分)
[解法二]取直線上一點,其經(jīng)變換后的點仍在該直線上,
∴,
得, …(14分)
故所求直線為,取直線上一點,其經(jīng)變換后得到的點仍在該直線上。
∴, …(16分)
即,得或,
故這樣的直線存在,其方程為或, …(18分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com