(?)k為偶數(shù)時(shí).正項(xiàng)數(shù)列{}滿(mǎn)足=1..求{}的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足2(Sn+1)=an2+an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足b1=2,bn+1=2bn(n∈N*),數(shù)列{cn}滿(mǎn)足cn=
an,n=2k-1
bn,n=2k
(k∈N*)
,數(shù)列{cn}的前n項(xiàng)和為T(mén)n,當(dāng)n為偶數(shù)時(shí),求Tn;
(3)若數(shù)列Pn=
4
3
•(2n-1)(n∈N*)
,甲同學(xué)利用第(2)問(wèn)中的Tn,試圖確定Tn-Pn的值是否可以等于20?為此,他設(shè)計(jì)了一個(gè)程序(如圖),但乙同學(xué)認(rèn)為這個(gè)程序如果被執(zhí)行會(huì)是一個(gè)“死循環(huán)”(即程序會(huì)永遠(yuǎn)循環(huán)下去,而無(wú)法結(jié)束),你是否同意乙同學(xué)的觀(guān)點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)函數(shù)f(x)=x2-2(-1)klnx(k∈N*).f′(x)是f(x)的導(dǎo)函數(shù).
(1)當(dāng)k為偶數(shù)時(shí),正項(xiàng)數(shù)列{an}滿(mǎn)足:數(shù)學(xué)公式.證明:數(shù)列數(shù)學(xué)公式中任意不同三項(xiàng)不能構(gòu)成等差數(shù)列;
(2)當(dāng)k為奇數(shù)時(shí),證明:當(dāng)x>0時(shí),對(duì)任意正整數(shù)n都有[f′(x)]n-2n-1f′(x)≥2n(2n-2)成立.

查看答案和解析>>

設(shè)函數(shù)f(x)=x2-2(-1)klnx(k∈N*),f′(x)表示f(x)的導(dǎo)函數(shù).
(1)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(2)當(dāng)k為偶數(shù)時(shí),數(shù)列{an}滿(mǎn)足:a1=1,anf′(an)=an+12-3.證明:數(shù)列{an2}中的任意三項(xiàng)不能構(gòu)成等差數(shù)列;
(3)當(dāng)k為奇數(shù)時(shí),證明:對(duì)任意正整數(shù)都有[f′(x)]n-2n-1f′(xn)≥2n(2n-2)成立.

查看答案和解析>>

設(shè)函數(shù)f(x)=x2﹣2(﹣1)klnx(k∈N*).f'(x)是f(x)的導(dǎo)函數(shù).
(1)當(dāng)k為偶數(shù)時(shí),正項(xiàng)數(shù)列{an}滿(mǎn)足:.證明:數(shù)列中任意不同三項(xiàng)不能構(gòu)成等差數(shù)列;
(2)當(dāng)k為奇數(shù)時(shí),證明:當(dāng)x>0時(shí),對(duì)任意正整數(shù)n都有[f'(x)]n﹣2n﹣1f'(x)≥2n(2n﹣2)成立.

查看答案和解析>>

設(shè)函數(shù)f(x)=x2-2(-1)klnx(k∈N*),f′(x)表示f(x)I的導(dǎo)函數(shù).
(1)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(2)當(dāng)it為偶數(shù)時(shí),數(shù)列{an}滿(mǎn)足:a1=1,anf′(an)=an+12-3.證明:數(shù)列{an2}中的任意三項(xiàng)不能構(gòu)成等差數(shù)列;
(3)當(dāng)k為奇數(shù)時(shí),證明:對(duì)任意正整數(shù)都有[f′(x)]n-2n-1f′(xn)≥2n(2n-2)成立.

查看答案和解析>>


同步練習(xí)冊(cè)答案