設(shè)函數(shù)f(x)=x2-2(-1)klnx(k∈N*),f′(x)表示f(x)的導(dǎo)函數(shù).
(1)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(2)當k為偶數(shù)時,數(shù)列{an}滿足:a1=1,anf′(an)=an+12-3.證明:數(shù)列{an2}中的任意三項不能構(gòu)成等差數(shù)列;
(3)當k為奇數(shù)時,證明:對任意正整數(shù)都有[f′(x)]n-2n-1f′(xn)≥2n(2n-2)成立.
分析:(1)先求函數(shù)f(x)的導(dǎo)數(shù),f′(x),再對k進行奇偶數(shù)討論:①當k為奇數(shù)時,f′(x)=
2(x2+1)
x
;②當k為偶數(shù)時,f′(x)=
2(x2-1)
x
;最后綜合即可;
(2)當k為偶數(shù)時,由(1)知f′(x)=
2(x2-1)
x
,由條件得{an2+1}是一個公比為2的等比數(shù)列,從而得到an2=2n-1,最后利用反證法進行證明即可;
(3)當k為奇數(shù)時,f′(x)=2(x+
1
x
),欲證原不等式成立,即證:(x+
1
x
n-(xn+
1
x n
)≥2n-2,由二項式定理得,即證:Cn1xn-2+Cn2xn-4+…+Cn 2-n x 2-n≥2n-2,設(shè)Sn=Cn1xn-2+Cn2xn-4+…+Cn 2-nx 2-n,利用倒序相加法即可證得.
解答:解:(1)函數(shù)f(x)的定義域為(0,+∞),又f′(x)=2x-2(-1)k
1
x
=
2[x2-(-1)k]
x
,
①當k為奇數(shù)時,f′(x)=
2(x2+1)
x
,∵x∈(0,+∞),∴f′(x)>0恒成立;
②當k為偶數(shù)時,f′(x)=
2(x2-1)
x
,∵x+1>0,f′(x)>0得x>1,即f(x)的單調(diào)增區(qū)間為(1,+∞),
綜上所述,當k 為奇數(shù)時,f(x)的單調(diào)增區(qū)間為(0,+∞),當k 為偶數(shù)時,即f(x)的單調(diào)增區(qū)間為(1,+∞),
(2)當k為偶數(shù)時,由(1)知f′(x)=
2(x2-1)
x
,∴f′(an)=
2(
a
2
n
-1)
an

由條件得:2(an2-1)=an+12-3,故有:an+12+1=2(an2+1),
∴{an2+1}是一個公比為2的等比數(shù)列,∴an2=2n-1,
假設(shè)數(shù)列{an2}中的存在三項ar2,s2,at2,能構(gòu)成等差數(shù)列
不妨設(shè)r<s<t,則2as2=ar2+at2,
即2(2s-1)=2r-1+2t-1,∴2s-r+1=1+2 t-r,
又s-r+1>0,t-r>0,∴2s-r+1為偶數(shù),1+2t-r為奇數(shù),故假設(shè)不成立,
因此,數(shù)列{an2}中的任意三項不能構(gòu)成等差數(shù)列;
(3)當k為奇數(shù)時,f′(x)=2(x+
1
x
),即證:(x+
1
x
n-(xn+
1
x n
)≥2n-2,
由二項式定理得,即證:Cn1xn-2+Cn2xn-4+…+
C
n-1
n
x2-n≥2n-2,
設(shè)Sn=Cn1xn-2+Cn2xn-4+…+
C
n-1
n
x2-n,
Sn=
C
n-1
n
x2-n+…+Cn2xn-4+Cn1xn-2,
兩式相加得:
2Sn=Cn1(xn-2+x2-n)+Cn2(xn-4+x4-n)+…+Cnn-1(xn-2+x2-n)≥2(Cn1+Cn2+…+
C
n-1
n
)=2(2n-2),
∴Sn≥2n-2,
即原不等式成立.
點評:本小題主要考查等差關(guān)系的確定、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、用數(shù)學(xué)歸納法證明不等式等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.本題利用了二項展開式的二項式系數(shù)和公式
C
0
n
+
C
1
n
+
C
2
n
+…+
C
n
n
=2n
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調(diào)性.
(2)若f(x)有兩個極值點x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實數(shù)m的值;
(2)當m=2時,若方程f(x)-h(x)=0在[1,3]上恰好有兩個不同的實數(shù)解,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習(xí)冊答案