(I) 求數(shù)列.的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列滿足(I)求數(shù)列的通項(xiàng)公式;

(II)若數(shù)列,前項(xiàng)和為,且證明:

【解析】第一問中,利用

∴數(shù)列{}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即 

第二問中, 

進(jìn)一步得到得    即

是等差數(shù)列.

然后結(jié)合公式求解。

解:(I)  解法二、,

∴數(shù)列{}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即 

(II)     ………②

由②可得: …………③

③-②,得    即 …………④

又由④可得 …………⑤

⑤-④得

是等差數(shù)列.

     

 

查看答案和解析>>

(本小題滿分13分)

已知數(shù)列的通項(xiàng)公式為.

(I)求、;并求的值;

(II)若,設(shè)數(shù)列的前項(xiàng)和為,求的值.

查看答案和解析>>

已知是等差數(shù)列,其前n項(xiàng)和為是等比數(shù)列,且 

(I)求數(shù)列的通項(xiàng)公式;

(II)記求證:,

【考點(diǎn)定位】本小題主要考查等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式、數(shù)列求和等基礎(chǔ)知識(shí).考查化歸與轉(zhuǎn)化的思想方法.考查運(yùn)算能力、推理論證能力.

 

查看答案和解析>>

已知是等差數(shù)列,其前n項(xiàng)和為, 是等比數(shù)列,且 
(I)求數(shù)列的通項(xiàng)公式;
(II)記求證:,。
【考點(diǎn)定位】本小題主要考查等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式、數(shù)列求和等基礎(chǔ)知識(shí).考查化歸與轉(zhuǎn)化的思想方法.考查運(yùn)算能力、推理論證能力.

查看答案和解析>>

)已知數(shù)列是等差數(shù)列,其前n項(xiàng)和為,,

(I)求數(shù)列的通項(xiàng)公式;

(II)設(shè)p、q是正整數(shù),且p≠q. 證明:.

 

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

D

B

C

B

C

A

C

A

B

C

D

二、填空題

13. 192     14. 15      15.     16. ②③⑤

三、解答題

17. 解:(Ⅰ)設(shè)三角形三內(nèi)角A、B、C對(duì)應(yīng)的三邊分別為a, b, c,

,∴,由正弦定理有,………………3分

又由余弦定理有,∴,即,

所以為Rt,且. ………………6分

(Ⅱ)又, 令a=4k, b=3k (k>0). ………………8分

,∴三邊長(zhǎng)分別為a=4,b=3,c=5. ………………10分

18. (Ⅰ)如圖,首先從五種不同顏色的鮮花中任選四種共種,

用四種顏色鮮花布置可分兩種情況:區(qū)域A、D同色和區(qū)域B、E同色,

皆有種,………………3分

故恰用四種不同顏色的鮮花布置的不同擺放方案共有種. ………………6分

(Ⅱ)設(shè)M表示事件“恰有兩個(gè)區(qū)域用紅色鮮花”,

如圖,當(dāng)區(qū)域A、D同色時(shí),共有種;

當(dāng)區(qū)域A、D不同色時(shí),共有種;

因此,所有基本事件總數(shù)為:180+240=420種. ………………8分

它們是等可能的.又因?yàn)锳、D為紅色時(shí),共有種;

B、E為紅色時(shí),共有種;

因此,事件M包含的基本事件有:36+36=72種.………………10分

所以,恰有兩個(gè)區(qū)域用紅色鮮花的概率=.………………12分

19. (Ⅰ)延長(zhǎng)至M,使,連,則,連,則或其補(bǔ)角就是異面直線所成角(設(shè)為),………………2分

不妨設(shè)AA1=AB=1,則在中,,

所以

故異面直線所成角的余弦值為.………………6分

   (Ⅱ)是正三棱柱,平面

   平面,平面平面,

   過點(diǎn)于點(diǎn),則平面,

,由三垂線定理得

故∠為二面角的平面角. ………………9分

不妨設(shè)AA1=AB=2,

,在中,.

    二面角的正弦值為.………………12分

20. 解:(Ⅰ)由已知,當(dāng)時(shí),   ……………… 2分

.     經(jīng)檢驗(yàn)時(shí)也成立. ………………4分

,得,∴p=.

.……………… 6分

(Ⅱ)由(1)得,.       ……………… 7分

2  ;              ①

.    ②   ………………9分

②-①得,

.       ………………12分

21. 解:(Ⅰ)f′(x)=3ax2+2bx-3,依題意,f′(1)=f′(-1)=0,………………2分

        即   解得a=1,b=0.∴f(x)=x3-3x. ………………4分

   (Ⅱ)f′(x)=3x2-3=3(x+1)(x-1),

         ∵曲線方程為y=x3-3x,∴點(diǎn)A(1,m)不在曲線上.

設(shè)切點(diǎn)為M(x0,y0),則點(diǎn)M的坐標(biāo)滿足

,故切線的斜率為,

整理得.………………7分

∵過點(diǎn)A(1,m)可作曲線的三條切線,

∴關(guān)于x0的方程=0有三個(gè)實(shí)根.

設(shè)g(0)= ,則g′(x0)=6,

由g′(x0)=0,得x0=0或x0­=1. ………………9分

∴g(x0)在(-∞,0),(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.

∴函數(shù)g(x0)= 的極值點(diǎn)為x0=0,x0=1.

∴關(guān)于x0方程=0有三個(gè)實(shí)根的充要條件是

解得-3<m<-2.

故所求的實(shí)數(shù)a的取值范圍是-3<m<-2. ………………12分

22. 解:(Ⅰ)∵

設(shè)O關(guān)于直線 的對(duì)稱點(diǎn)為的橫坐標(biāo)為 ,………………2分

又直線得線段的中點(diǎn)坐標(biāo)(1,-3).

∴橢圓方程為.………………5分

(Ⅱ)設(shè)點(diǎn),當(dāng)直線l的斜率存在時(shí),

則直線l的方程為,………6分

代入得:

, ……①

,①可化為:

,………………8分

由已知,有

,

………………10分

同理

解得 ,

……………………11分

故直線ME垂直于x軸,由橢圓的對(duì)稱性知點(diǎn)M、E關(guān)于x軸對(duì)稱,而點(diǎn)B在x軸上,

∴|BM|=|BE|,即△BME為等腰三角形. 

當(dāng)直線l的斜率不存在時(shí),結(jié)論顯然成立.……………………12分

 

 

 

 


同步練習(xí)冊(cè)答案