以下證明對于任意的.直線與的交點均在直線上. 查看更多

 

題目列表(包括答案和解析)

已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標(biāo);若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

(本題滿分15分)如圖,已知直線與拋物線和圓都相切,的焦點.

(1)求的值;

(2)設(shè)上的一動點,以為切點作拋物線的切線,直線軸于點,以為鄰邊作平行四邊形,證明:點在一條定直線上;

(3)在(2)的條件下,記點所在的定直線為,直線軸交點為,連接交拋物線兩點,求的面積的取值范圍.

22。(本題滿分15分)已知函數(shù)

(1)求函數(shù)的圖像在點處的切線方程;

(2)若,且對任意恒成立,求的最大值;

(3)當(dāng)時,證明

查看答案和解析>>

(2013•松江區(qū)二模)已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標(biāo);若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

已知曲線C為頂點在原點,以x軸為對稱軸,開口向右的拋物線,又點M(2,1)到拋物線C的準(zhǔn)線的距離為,

(1)求拋物線C的方程;

(2)證明:過點M的任意一條直線與拋物線恒有公共點;

(3)若(2)中的直線(i=1,2,3, 4)分別與拋物線C交于上下兩點,又點的縱坐標(biāo)依次成公差不為0的等差數(shù)列,試分析的大小關(guān)系。

查看答案和解析>>

已知橢圓,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.

(1)求橢圓C的方程;

(2)設(shè)軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,證明:直線x軸相交于定點;

(3)在(2)的條件下,過點的直線與橢圓交于、兩點,求的取值范圍.

 

查看答案和解析>>


同步練習(xí)冊答案