精英家教網 > 高中數學 > 題目詳情
(2013•松江區(qū)二模)已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.
分析:(1)設雙曲線C的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,由頂點坐標、漸近線方程及a、b、c 的關系求出a、b的值即得.
(2)設P(x1,y1),R(x2,y2),當直線l的斜率存在時,設設此直線方程為y=k(x+3),由
y=k(x+3)
2x2-y2=2
得(2-k2)x2-6k2x-9k2-2=0,再由方程的根與系數關系及
DA
DB
為定值;當直線l的斜率不存在時,當直線AB垂直于x軸時,其方程為x=-3,A,B的坐標為(-3,4)、(-3,-4),代入可求;
(3)對于過定點問題,可先假設存在,即假設直線MN過定點,再利用設直線MN的方程為:x=my+t,聯立方程組,利用垂直關系求直線MN過定點,若出現矛盾,則說明假設不成立,即不存在;否則存在.最后運用類比推理寫出類似結論.
解答:解:(1)設雙曲線C的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,則a=1,
b
a
=
2
,得b=
2
,所以,雙曲線C的方程為x2-
y2
2
=1

(2)當直線AB垂直于x軸時,其方程為x=-3,A,B的坐標為(-3,4)、(-3,-4),
DA
=(-4,4),
DB
=(-4,-4)
,得
DA
DB
=0.
當直線AB不與x軸垂直時,設此直線方程為y=k(x+3),由
y=k(x+3)
2x2-y2=2
得(2-k2)x2-6k2x-9k2-2=0.
設A(x1,y1),B(x2,y2),則x1+x2=
6k2
2-k2
,x1x2=
-9k2-2
2-k2
,
DA
DB
=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+3)(x2+3)

=(k2+1)x1x2+(3k2-1)(x1+x2)+9k2+1
=(k2+1)
-9k2-2
2-k2
+(3k2-1)
6k2
2-k2
+9k2+1=0.綜上,
DA
DB
=0為定值.
(3)當M,N滿足EM⊥EN時,取M,N關于x軸的對稱點M'、N',由對稱性知EM'⊥EN',此時MN與M'N'所在直線關于x軸對稱,若直線MN過定點,則定點必在x軸上.
設直線MN的方程為:x=my+t,
x=my+t
b2x2-a2y2=a2b2
,得(b2m2-a2)y2+2b2mty+b2(t2-a2)=0
設M(x1,y1),N(x2,y2),則y1+y2=
-2b2mt
b2m2-a2
,y1y2=
b2(t2-a2)
b2m2-a2
,
由EM⊥EN,得(x1-a)(x2-a)+y1y2=0,(my1+t-a)(my2+t-a)+y1y2=0,
(1+m2)y1y2+m(t-a)(y1+y2)+(t-a)2=0,(1+m2)
b2(t2-a2)
b2m2-a2
-m(t-a)
2b2mt
b2m2-a2
+(t-a)2=0
,
化簡得,t=
a(a2+b2)
a2-b2
或t=a(舍),
所以,直線MN過定點(
a(a2+b2)
a2-b2
,0).
情形一:在雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
中,若E'為它的左頂點,M,N為雙曲線Γ上的兩點(都不同于點E'),且E'M⊥E'N,則直線MN過定點(-
a(a2+b2)
a2-b2
,0).
情形二:在拋物線y2=2px(p>0)中,若M,N為拋物線上的兩點(都不同于原點O),且OM⊥ON,則直線MN過定點(2p,0).…..(16分)
情形三:(1)在橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中,若E為它的右頂點,M,N為橢圓上的兩點(都不同于點E),且EM⊥EN,則直線MN過定點(
a(a2-b2)
a2+b2
,0);
(2)在橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中,若E'為它的左頂點,M,N為橢圓上的兩點(都不同于點E'),且E'M⊥E'N,則直線MN過定點(
a(b2-a2)
a2+b2
,0);
(3)在橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中,若F為它的上頂點,M,N為橢圓上的兩點(都不同于點F),且FM⊥FN,則直線MN過定點(0,
b(b2-a2)
a2+b2
);        
(4)在橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中,若F'為它的下頂點,M,N為橢圓上的兩點(都不同于點F'),且F'M⊥F'N,則直線MN過定點(0,
b(a2-b2)
a2+b2
).
點評:本題主要考查了由雙曲線的性質求解雙曲線的方程,直線與雙曲線的相交關系的應用,方程的根與系數關系的應用,向量的坐標表示的應用,屬于直線與曲線位置關系的綜合應用,屬于綜合性試題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•松江區(qū)二模)若正整數n使得行列式
.
   1        n  
 2-n     3n 
.
=6
,則
P
n
7
=
42
42

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•松江區(qū)二模)已知函數f(x)=x
13
,x∈(1,27)
的值域為A,集合B={x|x2-2x<0,x∈R},則A∩B=
(1,2)
(1,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•松江區(qū)二模)已知α∈(-
π
2
,0)
,且cosα=
4
5
,則sin2α=
-
24
25
-
24
25

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•松江區(qū)二模)已知圓錐的母線長為5,側面積為15π,則此圓錐的體積為
12π
12π
(結果保留π).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•松江區(qū)二模)已知x=-3-2i(i為虛數單位)是一元二次方程x2+ax+b=0(a,b均為實數)的一個根,則a+b=
19
19

查看答案和解析>>

同步練習冊答案