可知.... 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
3
sinxcosx-cos2x+
1
2
,
(I)求函數(shù)f(x)的最小正周期;
(II)試用“五點(diǎn)法”做出函數(shù)f(x)在[
π
12
,
13π
12
]
內(nèi)的簡圖,并指出該函數(shù)可由函數(shù)y=sinx(x∈R)的圖象經(jīng)過怎樣的先平移后伸縮變換得到.

查看答案和解析>>

已知x=1是數(shù)學(xué)公式的一個極值點(diǎn)
(I)求b的值;
(II)求函數(shù)f(x)的單調(diào)減區(qū)間;
(III)設(shè)g(x)=f(x)-數(shù)學(xué)公式,試問過點(diǎn)(2,5)可作多少條直線與曲線y=g(x)相切?請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=sin2x+
3
sinxcosx+2cos2x,x∈R.

(I)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(II)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

已知中,內(nèi)角的對邊的邊長分別為,且

(I)求角的大。

(II)若的最小值.

【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,

第二問,

三角函數(shù)的性質(zhì)運(yùn)用。

解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB, 

(Ⅱ)由(Ⅰ)可知 

,,則當(dāng) ,即時,y的最小值為

 

查看答案和解析>>

已知函數(shù),
(I)求函數(shù)f(x)的最小正周期;
(II)試用“五點(diǎn)法”做出函數(shù)f(x)在內(nèi)的簡圖,并指出該函數(shù)可由函數(shù)y=sinx(x∈R)的圖象經(jīng)過怎樣的先平移后伸縮變換得到.

查看答案和解析>>


同步練習(xí)冊答案