又因?yàn)椋?. 查看更多

 

題目列表(包括答案和解析)

為了科學(xué)地比較考試成績(jī),有些選拔性考試常常將考試分?jǐn)?shù)轉(zhuǎn)化為標(biāo)準(zhǔn)分Z,轉(zhuǎn)化關(guān)系式為Z=,其中x是某位學(xué)生的考試分?jǐn)?shù),是這次考試的平均分,s是這次考試的標(biāo)準(zhǔn)差,Z為這位學(xué)生的標(biāo)準(zhǔn)分.轉(zhuǎn)化后的分?jǐn)?shù)可能出現(xiàn)小數(shù)或負(fù)數(shù),因此,又常將Z分?jǐn)?shù)作線性變換轉(zhuǎn)化為其他分?jǐn)?shù).例如某次學(xué)業(yè)選擇性考試采用的是T分?jǐn)?shù),線性變換公式為:T=42Z+58.

已知一組學(xué)號(hào)(ⅰ)為1-10的學(xué)生的某次考試成績(jī)?nèi)缦拢?/P>

則學(xué)號(hào)為1的學(xué)生的T分?jǐn)?shù)為_(kāi)_______.

查看答案和解析>>

為了科學(xué)地比較考試成績(jī),有些選拔性考試常常將考試分?jǐn)?shù)轉(zhuǎn)化為標(biāo)準(zhǔn)分Z,轉(zhuǎn)化關(guān)系式為Z=,其中x是某位學(xué)生的考試分?jǐn)?shù),是這次考試的平均分,s是這次考試的學(xué)生的標(biāo)準(zhǔn)差,Z為這位學(xué)生的標(biāo)準(zhǔn)分.轉(zhuǎn)化后的分?jǐn)?shù)可能出現(xiàn)小數(shù)或負(fù)數(shù),因此,又常將Z分?jǐn)?shù)作線性變換轉(zhuǎn)化為其他分?jǐn)?shù).例如某次學(xué)業(yè)選擇性考試采用的是T分?jǐn)?shù),線性變換公式為T(mén)=42Z+58.

已知一組學(xué)號(hào)(i)為1~10的某次考試成績(jī)?nèi)缦拢?/P>

則學(xué)號(hào)為1的T分?jǐn)?shù)為_(kāi)_______.

查看答案和解析>>

如圖,因?yàn)锳B∥CD,所以∠1=∠2,又因?yàn)椤?=∠3,所以∠1=∠3.所用的推理規(guī)則為

[  ]
A.

假言推理

B.

關(guān)系推理

C.

完全歸納推理

D.

三段論推理

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過(guò)點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫(huà)出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

解析:依題意得f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng),f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)是以4為周期的函數(shù).由f(x)在[3,5]上是增函數(shù)與f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng)得,f(x)在[-3,-1]上是減函數(shù).又函數(shù)f(x)是以4為周期的函數(shù),因此f(x)在[1,3]上是減函數(shù),f(x)在[1,3]上的最大值是f(1),最小值是f(3).

答案:A

查看答案和解析>>


同步練習(xí)冊(cè)答案