(Ⅱ)不等式等價(jià)于不等式由知. 查看更多

 

題目列表(包括答案和解析)

在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測(cè)評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù).滿分100分,按照大于等于80分為優(yōu)秀,小于80分為合格.為了解學(xué)生在該維度的測(cè)評(píng)結(jié)果,從畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表.
精英家教網(wǎng)
已知在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為
13

(1)請(qǐng)完成上面的列聯(lián)表;
(2))能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系?
(3)現(xiàn)在如果想了解全校學(xué)生該維度的表現(xiàn)情況,采取簡(jiǎn)單隨機(jī)抽樣的方式在全校學(xué)生中抽取少數(shù)一部分人來分析,請(qǐng)你選擇一個(gè)合適的抽樣方法,并解釋理由.

查看答案和解析>>

在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測(cè)評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù),滿分100分,按照大于等于80分為優(yōu)秀,小于80分為合格,為了解學(xué)生在該維度的測(cè)評(píng)結(jié)果,從畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù),該班共有60名學(xué)生,得到如下的列聯(lián)表:
 
優(yōu)秀
合格
總計(jì)
男生
6
 
 
女生
 
18
 
合計(jì)
 
 
60
已知在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為。
(1)請(qǐng)完成上面的列聯(lián)表;
(2)能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系?
(3)現(xiàn)在如果想了解全校學(xué)生該維度的表現(xiàn)情況,采取簡(jiǎn)單隨機(jī)抽樣的方式在全校學(xué)生中抽取少數(shù)一部分人來分析,請(qǐng)你選擇一個(gè)合適的抽樣方法,并解釋理由。

查看答案和解析>>

在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測(cè)評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù).滿分100分,按照大于等于80分為優(yōu)秀,小于80分為合格.為了解學(xué)生在該維度的測(cè)評(píng)結(jié)果,從畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表.

已知在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為
(1)請(qǐng)完成上面的列聯(lián)表;
(2))能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系?
(3)現(xiàn)在如果想了解全校學(xué)生該維度的表現(xiàn)情況,采取簡(jiǎn)單隨機(jī)抽樣的方式在全校學(xué)生中抽取少數(shù)一部分人來分析,請(qǐng)你選擇一個(gè)合適的抽樣方法,并解釋理由.

查看答案和解析>>

給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
(i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請(qǐng)問:該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果   

查看答案和解析>>

給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學(xué)生的解答如下:
(i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設(shè)△ABC外接圓半徑為R,由正弦定理可得,原式等價(jià)于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請(qǐng)問:該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果   

查看答案和解析>>


同步練習(xí)冊(cè)答案