題目列表(包括答案和解析)
設函數(shù).
(Ⅰ) 當時,求的單調區(qū)間;
(Ⅱ) 若在上的最大值為,求的值.
【解析】第一問中利用函數(shù)的定義域為(0,2),.
當a=1時,所以的單調遞增區(qū)間為(0,),單調遞減區(qū)間為(,2);
第二問中,利用當時, >0, 即在上單調遞增,故在上的最大值為f(1)=a 因此a=1/2.
解:函數(shù)的定義域為(0,2),.
(1)當時,所以的單調遞增區(qū)間為(0,),單調遞減區(qū)間為(,2);
(2)當時, >0, 即在上單調遞增,故在上的最大值為f(1)=a 因此a=1/2.
已知函數(shù),(),
(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當時,若函數(shù)的單調區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1),
∵曲線與曲線在它們的交點(1,c)處具有公共切線
∴,
∴
(2)令,當時,
令,得
時,的情況如下:
x |
|||||
+ |
0 |
- |
0 |
+ |
|
|
|
所以函數(shù)的單調遞增區(qū)間為,,單調遞減區(qū)間為
當,即時,函數(shù)在區(qū)間上單調遞增,在區(qū)間上的最大值為,
當且,即時,函數(shù)在區(qū)間內單調遞增,在區(qū)間上單調遞減,在區(qū)間上的最大值為
當,即a>6時,函數(shù)在區(qū)間內單調遞贈,在區(qū)間內單調遞減,在區(qū)間上單調遞增。又因為
所以在區(qū)間上的最大值為。
已知函數(shù)y=cos2x+sinxcosx+1,x∈R.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的單調減區(qū)間.
【解析】第一問中利用化為單一三角函數(shù)y=sin(2x+)+.,然后利用周期公式求解得到。第二問中,2x+落在正弦函數(shù)的增區(qū)間里面,解得的x的范圍即為所求,
解:因為y=cos2x+sinxcosx+1,x∈R.所以y=sin(2x+)+.
(1)周期為T==π,
(2)
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當時單調遞減;當時單調遞增,故當時,取最小值
于是對一切恒成立,當且僅當. 、
令則
當時,單調遞增;當時,單調遞減.
故當時,取最大值.因此,當且僅當時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當時,單調遞減;當時,單調遞增.故當,即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導函數(shù)研究函數(shù)單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.
已知函數(shù)在處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間上是單調函數(shù),求實數(shù)m的取值范圍;
【解析】第一問中利用導數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有,得
解:⑴ 求導,又f(x)在x=1處取得極值2,所以,即,所以…………6分
⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有,得, …………9分
當f(x)在區(qū)間(m,2m+1)上單調遞減,則有
得 …………12分
.綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當時,f(x)在(m,2m+1)上單調遞減;則實數(shù)m的取值范圍是或
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com