因此在每一個區(qū)間()是增函數(shù). 查看更多

 

題目列表(包括答案和解析)

解::因為,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點,又因為y=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點個數(shù)只有一個方法2:把函數(shù)的零點個數(shù)個數(shù)問題轉(zhuǎn)化為判斷方程解的個數(shù)問題,近而轉(zhuǎn)化成判斷交點個數(shù)問題,在坐標系中畫出圖形


由圖看出顯然一個交點,因此函數(shù)的零點個數(shù)只有一個

袋中有50個大小相同的號牌,其中標著0號的有5個,標著n號的有n個(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數(shù)的概率.

查看答案和解析>>

現(xiàn)有命題:若,且在兩個區(qū)間上都是增函數(shù),則在區(qū)間上也是增函數(shù)。若認為此命題為真,請給出證明;若認為此命題為假,請對原命題的條件予以補充(不允許變更命題的內(nèi)容,不允許舉例)使原命題成立,先寫出補充條件,然后給出證明。

查看答案和解析>>

函數(shù)f(x)是定義在[0,1]上的函數(shù),滿足f(x)=2f(
x
2
)
,且f(1)=1,在每一個區(qū)間(
1
2i
 , 
1
2i-1
]
(i=1,2,3,…)上,y=f(x)的圖象都是斜率為同一常數(shù)k的直線的一部分,記直線x=
1
2n
,x=
1
2n-1
,x軸及函數(shù)y=f(x)的圖象圍成的梯形面積為an(n=1,2,3,…),則數(shù)列{an}的通項公式為
an=
4-k
22n+1
an=
4-k
22n+1

查看答案和解析>>

(2008•南京模擬)函數(shù)f (x)是定義在[0,1]上的函數(shù),滿足f (x)=2f (
x
2
),且f (1)=1,在每一個區(qū)間(
1
2k
,
1
2k-1
](k=1,2,3,…)上,y=f (x)的圖象都是斜率為同一常數(shù)m的直線的一部分,記直線x=
5
2n
,x=
1
2n-1
,x軸及函數(shù)y=f (x)的圖象圍成的梯形面積為an(n=1,2,3,…),則數(shù)列{an}的通項公式為
12-m
22n+1
12-m
22n+1
.(用最簡形式表示)

查看答案和解析>>

關(guān)于函數(shù)f(x)=-tan2x,有下列說法:
①f(x)的定義域是{x∈R|x≠
π
2
+kπ,k∈Z}②f(x)是奇函數(shù) ③在定義域上是增函數(shù)  ④在每一個區(qū)間(-
π
4
+
2
,
π
4
+
2
)(k∈Z)上是減函數(shù)  ⑤最小正周期是π其中正確的是( 。
A、①②③B、②④⑤
C、②④D、③④⑤

查看答案和解析>>


同步練習冊答案