.而恒成立..-.--------.7分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=x2+(2k-3)x+k2-7的零點分別是-1和-2
(1)求k的值;
(2)若x∈[-2,2],則f(x)<m恒成立,求m的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
11
01

(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

(2012•漳州模擬)本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩陣A;
(Ⅱ) 矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)選修4-4:坐標系與參數(shù)方程
已知直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3 
y=
3
(t為參數(shù)).以直角坐標系xOy中的原點O為 極點,x軸的非負半軸為極軸,圓C的極坐標方程為ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐標方程;
(Ⅱ) P為圓C上的點,求P到l距離的取值范圍.
(3)選修4-5:不等式選講
已知關(guān)于x的不等式:|x-1|+|x+2|≥a2+2|a|-5對任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將選題號填入括號中.
(1)選修4一2:矩陣與變換
求矩陣A=
2,1
3,0
的特征值及對應(yīng)的特征向量.
(2)選修4一4:坐標系與參數(shù)方程
已知直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù))和圓C的極坐標方程:ρ=2
2
sin(θ+
π
4
)

(Ⅰ)將直線l的參數(shù)方程化為普通方程,圓C的極坐標方程化為直角坐標方程;
(Ⅱ)判斷直線l和圓C的位置關(guān)系.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求實數(shù)x的范圍.

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分,作答時,先在答題卡上把所選題目對應(yīng)的題號填入括號中.
(1)選修4-2:矩陣與變換
已知二階矩陣M=
a1
3d
有特征值λ=-1及對應(yīng)的一個特征向量e1=
1
-3

(Ⅰ)求距陣M;
(Ⅱ)設(shè)曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.
(2)選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,曲線C的參數(shù)方程為
x=2+t
y=t+1
(t
為參數(shù)),曲線P在以該直角坐標系的原點O的為極點,x軸的正半軸為極軸的極坐標系下的方程為p2-4pcosθ+3=0.
(Ⅰ)求曲線C的普通方程和曲線P的直角坐標方程;
(Ⅱ)設(shè)曲線C和曲線P的交點為A、B,求|AB|.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求實數(shù)t的取值范圍;
(Ⅱ)記t的最大值為T,若正實數(shù)a、b、c滿足a2+b2+c2=T,求a+2b+c的最大值.

查看答案和解析>>


同步練習(xí)冊答案