解含參數(shù)不等式時.要特別注意數(shù)形結合思想.函數(shù)與方程思想.分類討論思想的錄活運用.學科網 查看更多

 

題目列表(包括答案和解析)

D.

【命題意圖】本題考查二元一次不等式(組)表示的平面區(qū)域、直線的斜率、三角形面積公式等基礎知識,考查數(shù)形結合思想,容易題.

查看答案和解析>>

設拋物線>0)的焦點為,準線為,上一點,已知以為圓心,為半徑的圓,兩點.

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,三點在同一條直線上,直線平行,且只有一個公共點,求坐標原點到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關系、點到直線距離公式、線線平行等基礎知識,考查數(shù)形結合思想和運算求解能力.

【解析】設準線軸的焦點為E,圓F的半徑為,

則|FE|=,=,E是BD的中點,

(Ⅰ) ∵,∴=,|BD|=,

設A(,),根據拋物線定義得,|FA|=,

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:;

(Ⅱ) 解析1∵,三點在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-,

∴直線的方程為:,∴原點到直線的距離=,

設直線的方程為:,代入得,,

只有一個公共點, ∴=,∴,

∴直線的方程為:,∴原點到直線的距離=,

∴坐標原點到,距離的比值為3.

解析2由對稱性設,則

      點關于點對稱得:

     得:,直線

     切點

     直線

坐標原點到距離的比值為

 

查看答案和解析>>

解關于x的不等式>1(a>0).

解參數(shù)不等式時對于參數(shù)的討論,特別注意不能隨便去分母.

查看答案和解析>>

解不等式(x2+x+1)(x+1)3(x-2)2(3-x)>0.

解高次不等式時將不等式一邊分解為若干個一次因式的積,且x的系數(shù)為正.

查看答案和解析>>

(2007•普陀區(qū)一模)現(xiàn)有問題:“對任意x>0,不等式x-a+
1
x+a
>0恒成立,求實數(shù)a的取值范圍.”有兩位同學用數(shù)形結合的方法分別提出了自己的解題思路和答案:
學生甲:在一個坐標系內作出函數(shù)f(x)=
1
x+a
和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
學生乙:在坐標平面內作出函數(shù)f(x)=x+a+
1
x+a
的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
則以下對上述兩位同學的解題方法和結論的判斷都正確的是(  )

查看答案和解析>>


同步練習冊答案