而s2=[(x12+x22+-+502+1002+-+x482)-482]=75. 查看更多

 

題目列表(包括答案和解析)

(2011•洛陽(yáng)二模)給出下列命題:
①設(shè)向量
e1
,
e2
滿(mǎn)足|
e1
|=2,|
e2
|=1,
e1
,
e2
的夾角為
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夾角為鈍角,則實(shí)數(shù)t的取值范圍是(-7,-
1
2
);
②已知一組正數(shù)x1,x2,x3,x4的方差為s2=
1
4
(x12+x22+x32+x42)-4,則x1+1,x2+1,x3+1,x4+1的平均數(shù)為1
③設(shè)a,b,c分別為△ABC的角A,B,C的對(duì)邊,則方程x2+2ax+b2=o與x2+2cx-b2=0有公共根的充要條件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的數(shù)字之和,如112+1=122,1+2+2=5,所以f(n)=5,記f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,則f20(5)=11.
上面命題中,假命題的序號(hào)是
 (寫(xiě)出所有假命題的序號(hào)).

查看答案和解析>>

已知一組正數(shù)x1,x2,x3,x4的方差為S2=
1
4
(x12+x22+x32+x42-16),則數(shù)據(jù)x1+2,x2+2,BN的平均數(shù)為( 。

查看答案和解析>>

已知一組正數(shù)x1,x2,x3,x4的方差為S2=
1
4
(x12+x22+x32+x42-16),則數(shù)據(jù)x1+2,x2+2,BN的平均數(shù)為(  )
A.2B.4C.-2D.不確定

查看答案和解析>>

下列命題
①命題“若am2>bm2,則a>b”的逆命題是真命題;
②若
a
=(4,3)
,
b
=(-2,1)
,則
b
a
上的投影是-
5
;
③在(
x
+
2
4x
16的二項(xiàng)展開(kāi)式中,有理項(xiàng)共有4項(xiàng);
④已知一組正數(shù)x1,x2,x3,x4的方差為s2=
1
4
(x12+x22+x32+x42-16)
,則數(shù)據(jù)x1+2,x2+2,x3+2,x4+2的平均數(shù)為4;
⑤復(fù)數(shù)
3+2i
i
的共軛復(fù)數(shù)是a+bi(a,b∈R),則ab=-6.
其中真命題的個(gè)數(shù)為(  )

查看答案和解析>>

已知一組數(shù)據(jù)x1,x2,…,xn的方差s2=
1
n
[(x1-
.
x
)2+(x2-
.
x
)2+…+(xn-
.
x
)2]
,其中
.
x
是這組數(shù)據(jù)的平均數(shù).試證明s2=
1
n
(x12+x22+…+xn2)-
.
x
2

查看答案和解析>>

一、1.D 2. B 3.A  4.D  5. D  6.  A  7.  B  8.  C  9.  D  10.  C   11.  C  12 A 13. 提示:此題為抽樣方法的選取問(wèn)題.當(dāng)總體中個(gè)體較多時(shí)宜采用系統(tǒng)抽樣;當(dāng)總體中的個(gè)體差異較大時(shí),宜采用分層抽樣;當(dāng)總體中個(gè)體較少時(shí),宜采用隨機(jī)抽樣.

依據(jù)題意,第①項(xiàng)調(diào)查應(yīng)采用分層抽樣法、第②項(xiàng)調(diào)查應(yīng)采用簡(jiǎn)單隨機(jī)抽樣法.故選B.

答案:B

1,3,5

答案:B

二. 15. 37  ; 16.  ; 17.甲 ; 18.5600;

19. 提示:此問(wèn)題總體中個(gè)體的個(gè)數(shù)較多,因此采用系統(tǒng)抽樣.按題目中要求的規(guī)則抽取即可.

m=6,k=7,m+k=13,∴在第7小組中抽取的號(hào)碼是63.

答案:63

20.提示:不妨設(shè)在第1組中隨機(jī)抽到的號(hào)碼為x,則在第16組中應(yīng)抽出的號(hào)碼為120+x.

設(shè)第1組抽出的號(hào)碼為x,則第16組應(yīng)抽出的號(hào)碼是8×15+x=126,∴x=6.

答案:6

三.21.解 分層抽樣應(yīng)按各層所占的比例從總體中抽取.

∵120∶16∶24=15∶2∶3,又共抽出20人,

∴各層抽取人數(shù)分別為20×=15人,20×=2人,20×=3人.

答案:15人、2人、3人.

22. 解:(1)  ;  ;;.

的概率分布如下表

0

1

2

3

P

(2)乙至多擊中目標(biāo)2次的概率為.

    1,3,5

    所以甲恰好比乙多擊中目標(biāo)2次的概率為

     


    同步練習(xí)冊(cè)答案